mlflow.h2o

The mlflow.h2o module provides an API for logging and loading H2O models. This module exports H2O models with the following flavors:

H20 (native) format

This is the main flavor that can be loaded back into H2O.

mlflow.pyfunc

Produced for use by generic pyfunc-based deployment tools and batch inference.

mlflow.h2o.get_default_conda_env()[source]
Returns

The default Conda environment for MLflow Models produced by calls to save_model() and log_model().

mlflow.h2o.load_model(model_uri)[source]

Load an H2O model from a local file (if run_id is None) or a run. This function expects there is an H2O instance initialised with h2o.init.

Parameters

model_uri

The location, in URI format, of the MLflow model. For example:

  • /Users/me/path/to/local/model

  • relative/path/to/local/model

  • s3://my_bucket/path/to/model

  • runs:/<mlflow_run_id>/run-relative/path/to/model

  • models:/<model_name>/<model_version>

  • models:/<model_name>/<stage>

For more information about supported URI schemes, see Referencing Artifacts.

Returns

An H2OEstimator model object.

mlflow.h2o.log_model(h2o_model, artifact_path, conda_env=None, registered_model_name=None, signature: Optional[mlflow.models.signature.ModelSignature] = None, input_example: Optional[Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list]] = None, **kwargs)[source]

Log an H2O model as an MLflow artifact for the current run.

Parameters
  • h2o_model – H2O model to be saved.

  • artifact_path – Run-relative artifact path.

  • conda_env

    Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in get_default_conda_env(). If None, the default get_default_conda_env() environment is added to the model. The following is an example dictionary representation of a Conda environment:

    {
        'name': 'mlflow-env',
        'channels': ['defaults'],
        'dependencies': [
            'python=3.7.0',
            'pip': [
                'h2o==3.20.0.8'
            ]
        ]
    }
    

  • registered_model_name – (Experimental) If given, create a model version under registered_model_name, also creating a registered model if one with the given name does not exist.

  • signature

    (Experimental) ModelSignature describes model input and output Schema. The model signature can be inferred from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:

    from mlflow.models.signature import infer_signature
    train = df.drop_column("target_label")
    predictions = ... # compute model predictions
    signature = infer_signature(train, predictions)
    

  • input_example – (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.

  • kwargs – kwargs to pass to h2o.save_model method.

mlflow.h2o.save_model(h2o_model, path, conda_env=None, mlflow_model=None, settings=None, signature: Optional[mlflow.models.signature.ModelSignature] = None, input_example: Optional[Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list]] = None)[source]

Save an H2O model to a path on the local file system.

Parameters
  • h2o_model – H2O model to be saved.

  • path – Local path where the model is to be saved.

  • conda_env

    Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in get_default_conda_env(). If None, the default get_default_conda_env() environment is added to the model. The following is an example dictionary representation of a Conda environment:

    {
        'name': 'mlflow-env',
        'channels': ['defaults'],
        'dependencies': [
            'python=3.7.0',
            'pip': [
                'h2o==3.20.0.8'
            ]
        ]
    }
    

  • signature

    (Experimental) ModelSignature describes model input and output Schema. The model signature can be inferred from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:

    from mlflow.models.signature import infer_signature
    train = df.drop_column("target_label")
    predictions = ... # compute model predictions
    signature = infer_signature(train, predictions)
    

  • input_example – (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.

  • mlflow_modelmlflow.models.Model this flavor is being added to.