mlflow.paddle
The mlflow.paddle
module provides an API for logging and loading paddle models.
This module exports paddle models with the following flavors:
- Paddle (native) format
This is the main flavor that can be loaded back into paddle.
mlflow.pyfunc
Produced for use by generic pyfunc-based deployment tools and batch inference. NOTE: The mlflow.pyfunc flavor is only added for paddle models that define predict(), since predict() is required for pyfunc model inference.
-
mlflow.paddle.
autolog
(log_every_n_epoch=1, log_models=True, disable=False, exclusive=False, silent=False)[source] Note
Experimental: This method may change or be removed in a future release without warning.
Enables (or disables) and configures autologging from PaddlePaddle to MLflow.
Autologging is performed when the fit method of paddle.Model is called.
- Parameters
log_every_n_epoch – If specified, logs metrics once every n epochs. By default, metrics are logged after every epoch.
log_models – If
True
, trained models are logged as MLflow model artifacts. IfFalse
, trained models are not logged.disable – If
True
, disables the PaddlePaddle autologging integration. IfFalse
, enables the PaddlePaddle autologging integration.exclusive – If
True
, autologged content is not logged to user-created fluent runs. IfFalse
, autologged content is logged to the active fluent run, which may be user-created.silent – If
True
, suppress all event logs and warnings from MLflow during PyTorch Lightning autologging. IfFalse
, show all events and warnings during PaddlePaddle autologging.
import paddle import mlflow def show_run_data(run_id): run = mlflow.get_run(run_id) print("params: {}".format(run.data.params)) print("metrics: {}".format(run.data.metrics)) client = mlflow.tracking.MlflowClient() artifacts = [f.path for f in client.list_artifacts(run.info.run_id, "model")] print("artifacts: {}".format(artifacts)) class LinearRegression(paddle.nn.Layer): def __init__(self): super().__init__() self.fc = paddle.nn.Linear(13, 1) def forward(self, feature): return self.fc(feature) train_dataset = paddle.text.datasets.UCIHousing(mode="train") eval_dataset = paddle.text.datasets.UCIHousing(mode="test") model = paddle.Model(LinearRegression()) optim = paddle.optimizer.SGD(learning_rate=1e-2, parameters=model.parameters()) model.prepare(optim, paddle.nn.MSELoss(), paddle.metric.Accuracy()) mlflow.paddle.autolog() with mlflow.start_run() as run: model.fit(train_dataset, eval_dataset, batch_size=16, epochs=10) show_run_data(run.info.run_id)
params: { "learning_rate": "0.01", "optimizer_name": "SGD", } metrics: { "loss": 17.482044, "step": 25.0, "acc": 0.0, "eval_step": 6.0, "eval_acc": 0.0, "eval_batch_size": 6.0, "batch_size": 4.0, "eval_loss": 24.717455, } artifacts: [ "model/MLmodel", "model/conda.yaml", "model/model.pdiparams", "model/model.pdiparams.info", "model/model.pdmodel", "model/requirements.txt", ]
-
mlflow.paddle.
get_default_conda_env
()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.paddle.
get_default_pip_requirements
()[source] - Returns
A list of default pip requirements for MLflow Models produced by this flavor. Calls to
save_model()
andlog_model()
produce a pip environment that, at minimum, contains these requirements.
-
mlflow.paddle.
load_model
(model_uri, model=None, **kwargs)[source] Load a paddle model from a local file or a run. :param model_uri: The location, in URI format, of the MLflow model, for example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
- Parameters
model – Required when loading a paddle.Model model saved with training=True.
kwargs – The keyword arguments to pass to paddle.jit.load or model.load.
For more information about supported URI schemes, see Referencing Artifacts.
- Returns
A paddle model.
-
mlflow.paddle.
log_model
(pd_model, artifact_path, training=False, conda_env=None, registered_model_name=None, signature: Optional[mlflow.models.signature.ModelSignature] = None, input_example: Optional[Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list]] = None, await_registration_for=300, pip_requirements=None, extra_pip_requirements=None)[source] Log a paddle model as an MLflow artifact for the current run. Produces an MLflow Model containing the following flavors:
mlflow.pyfunc
. NOTE: This flavor is only included for paddle models that define predict(), since predict() is required for pyfunc model inference.
- Parameters
pd_model – paddle model to be saved.
artifact_path – Run-relative artifact path.
training – Only valid when saving a model trained using the PaddlePaddle high level API. If set to True, the saved model supports both re-training and inference. If set to False, it only supports inference.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()
is added to the model. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. pip requirements fromconda_env
are written to a piprequirements.txt
file and the full conda environment is written toconda.yaml
. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.7.0", { "pip": [ "paddle==x.y.z" ], }, ], }
registered_model_name – If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.signature –
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: pythonfrom mlflow.models.signature import infer_signature train = df.drop_column(“target_label”) predictions = … # compute model predictions signature = infer_signature(train, predictions)
input_example – Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.
await_registration_for – Number of seconds to wait for the model version to finish being created and is in
READY
status. By default, the function waits for five minutes. Specify 0 or None to skip waiting.pip_requirements – Either an iterable of pip requirement strings (e.g.
["paddle", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes the environment this model should be run in. IfNone
, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()
from the current software environment. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.Warning
The following arguments can’t be specified at the same time:
conda_env
pip_requirements
extra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirements
andextra_pip_requirements
.
import mlflow.paddle def load_data(): ... class Regressor(): ... model = Regressor() model.train() training_data, test_data = load_data() opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) EPOCH_NUM = 10 BATCH_SIZE = 10 for epoch_id in range(EPOCH_NUM): ... mlflow.log_param('learning_rate', 0.01) mlflow.paddle.log_model(model, "model") sk_path_dir = ... mlflow.paddle.save_model(model, sk_path_dir)
-
mlflow.paddle.
save_model
(pd_model, path, training=False, conda_env=None, mlflow_model=None, signature: Optional[mlflow.models.signature.ModelSignature] = None, input_example: Optional[Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list]] = None, pip_requirements=None, extra_pip_requirements=None)[source] Save a paddle model to a path on the local file system. Produces an MLflow Model containing the following flavors:
mlflow.pyfunc
. NOTE: This flavor is only included for paddle models that define predict(), since predict() is required for pyfunc model inference.
- Parameters
pd_model – paddle model to be saved.
path – Local path where the model is to be saved.
training – Only valid when saving a model trained using the PaddlePaddle high level API. If set to True, the saved model supports both re-training and inference. If set to False, it only supports inference.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()
is added to the model. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. pip requirements fromconda_env
are written to a piprequirements.txt
file and the full conda environment is written toconda.yaml
. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.7.0", { "pip": [ "paddle==x.y.z" ], }, ], }
mlflow_model –
mlflow.models.Model
this flavor is being added to.signature –
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: pythonfrom mlflow.models.signature import infer_signature train = df.drop_column(“target_label”) predictions = … # compute model predictions signature = infer_signature(train, predictions)
input_example – Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.
pip_requirements – Either an iterable of pip requirement strings (e.g.
["paddle", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes the environment this model should be run in. IfNone
, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()
from the current software environment. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.Warning
The following arguments can’t be specified at the same time:
conda_env
pip_requirements
extra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirements
andextra_pip_requirements
.
import mlflow.paddle import paddle from paddle.nn import Linear import paddle.nn.functional as F import numpy as np import os import random from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn import preprocessing def load_data(): # dataset on boston housing prediction X, y = load_boston(return_X_y=True) min_max_scaler = preprocessing.MinMaxScaler() X_min_max = min_max_scaler.fit_transform(X) X_normalized = preprocessing.scale(X_min_max, with_std=False) X_train, X_test, y_train, y_test = train_test_split( X_normalized, y, test_size=0.2, random_state=42) y_train = y_train.reshape(-1, 1) y_test = y_test.reshape(-1, 1) return np.concatenate( (X_train, y_train), axis=1),np.concatenate((X_test, y_test), axis=1 ) class Regressor(paddle.nn.Layer): def __init__(self): super(Regressor, self).__init__() self.fc = Linear(in_features=13, out_features=1) @paddle.jit.to_static def forward(self, inputs): x = self.fc(inputs) return x model = Regressor() model.train() training_data, test_data = load_data() opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) EPOCH_NUM = 10 BATCH_SIZE = 10 for epoch_id in range(EPOCH_NUM): np.random.shuffle(training_data) mini_batches = [training_data[k : k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)] for iter_id, mini_batch in enumerate(mini_batches): x = np.array(mini_batch[:, :-1]).astype('float32') y = np.array(mini_batch[:, -1:]).astype('float32') house_features = paddle.to_tensor(x) prices = paddle.to_tensor(y) predicts = model(house_features) loss = F.square_error_cost(predicts, label=prices) avg_loss = paddle.mean(loss) if iter_id%20==0: print("epoch: {}, iter: {}, loss is: {}".format( epoch_id, iter_id, avg_loss.numpy())) avg_loss.backward() opt.step() opt.clear_grad() mlflow.log_param('learning_rate', 0.01) mlflow.paddle.log_model(model, "model") sk_path_dir = './test-out' mlflow.paddle.save_model(model, sk_path_dir) print("Model saved in run %s" % mlflow.active_run().info.run_uuid)