"""
The ``mlflow.catboost`` module provides an API for logging and loading CatBoost models.
This module exports CatBoost models with the following flavors:
CatBoost (native) format
This is the main flavor that can be loaded back into CatBoost.
:py:mod:`mlflow.pyfunc`
Produced for use by generic pyfunc-based deployment tools and batch inference.
.. _CatBoost:
https://catboost.ai/docs/concepts/python-reference_catboost.html
.. _CatBoost.save_model:
https://catboost.ai/docs/concepts/python-reference_catboost_save_model.html
.. _CatBoostClassifier:
https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html
.. _CatBoostRanker:
https://catboost.ai/docs/concepts/python-reference_catboostranker.html
.. _CatBoostRegressor:
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html
"""
import os
import yaml
import mlflow
from mlflow import pyfunc
from mlflow.models import Model, ModelInputExample
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import ModelSignature
from mlflow.models.utils import _save_example
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.environment import (
_mlflow_conda_env,
_validate_env_arguments,
_process_pip_requirements,
_process_conda_env,
_CONDA_ENV_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_CONSTRAINTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_PythonEnv,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
from mlflow.utils.file_utils import write_to
from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS
from mlflow.utils.model_utils import (
_get_flavor_configuration,
_validate_and_copy_code_paths,
_add_code_from_conf_to_system_path,
_validate_and_prepare_target_save_path,
)
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
FLAVOR_NAME = "catboost"
_MODEL_TYPE_KEY = "model_type"
_SAVE_FORMAT_KEY = "save_format"
_MODEL_BINARY_KEY = "data"
_MODEL_BINARY_FILE_NAME = "model.cb"
[docs]def get_default_pip_requirements():
"""
:return: A list of default pip requirements for MLflow Models produced by this flavor.
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment
that, at minimum, contains these requirements.
"""
return [_get_pinned_requirement("catboost")]
[docs]def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
cb_model,
path,
conda_env=None,
code_paths=None,
mlflow_model=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""
Save a CatBoost model to a path on the local file system.
:param cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
`CatBoostRanker`_, or `CatBoostRegressor`_) to be saved.
:param path: Local path where the model is to be saved.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
:param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:param kwargs: kwargs to pass to `CatBoost.save_model`_ method.
"""
import catboost as cb
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
path = os.path.abspath(path)
_validate_and_prepare_target_save_path(path)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if mlflow_model is None:
mlflow_model = Model()
if signature is not None:
mlflow_model.signature = signature
if input_example is not None:
_save_example(mlflow_model, input_example, path)
if metadata is not None:
mlflow_model.metadata = metadata
model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
cb_model.save_model(model_data_path, **kwargs)
model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.catboost",
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
**model_bin_kwargs,
)
flavor_conf = {
_MODEL_TYPE_KEY: cb_model.__class__.__name__,
_SAVE_FORMAT_KEY: kwargs.get("format", "cbm"),
**model_bin_kwargs,
}
mlflow_model.add_flavor(
FLAVOR_NAME, catboost_version=cb.__version__, code=code_dir_subpath, **flavor_conf
)
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
if pip_requirements is None:
default_reqs = get_default_pip_requirements()
# To ensure `_load_pyfunc` can successfully load the model during the dependency
# inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
inferred_reqs = mlflow.models.infer_pip_requirements(
path,
FLAVOR_NAME,
fallback=default_reqs,
)
default_reqs = sorted(set(inferred_reqs).union(default_reqs))
else:
default_reqs = None
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs,
pip_requirements,
extra_pip_requirements,
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
# Save `constraints.txt` if necessary
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
# Save `requirements.txt`
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
cb_model,
artifact_path,
conda_env=None,
code_paths=None,
registered_model_name=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""
Log a CatBoost model as an MLflow artifact for the current run.
:param cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
`CatBoostRanker`_, or `CatBoostRegressor`_) to be saved.
:param artifact_path: Run-relative artifact path.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param registered_model_name: This argument may change or be removed in a
future release without warning. If given, create a model
version under ``registered_model_name``, also creating a
registered model if one with the given name does not exist.
:param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.
:param await_registration_for: Number of seconds to wait for the model version to finish
being created and is in ``READY`` status. By default, the function
waits for five minutes. Specify 0 or None to skip waiting.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:param kwargs: kwargs to pass to `CatBoost.save_model`_ method.
:return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
metadata of the logged model.
"""
return Model.log(
artifact_path=artifact_path,
flavor=mlflow.catboost,
registered_model_name=registered_model_name,
cb_model=cb_model,
conda_env=conda_env,
code_paths=code_paths,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
**kwargs,
)
def _init_model(model_type):
from catboost import CatBoost, CatBoostClassifier, CatBoostRegressor
model_types = {c.__name__: c for c in [CatBoost, CatBoostClassifier, CatBoostRegressor]}
try:
from catboost import CatBoostRanker
model_types[CatBoostRanker.__name__] = CatBoostRanker
except ImportError:
pass
if model_type not in model_types:
raise TypeError(
"Invalid model type: '{}'. Must be one of {}".format(
model_type, list(model_types.keys())
)
)
return model_types[model_type]()
def _load_model(path, model_type, save_format):
model = _init_model(model_type)
model.load_model(os.path.abspath(path), save_format)
return model
def _load_pyfunc(path):
"""
Load PyFunc implementation. Called by ``pyfunc.load_model``.
:param path: Local filesystem path to the MLflow Model with the ``catboost`` flavor.
"""
flavor_conf = _get_flavor_configuration(
model_path=os.path.dirname(path), flavor_name=FLAVOR_NAME
)
return _CatboostModelWrapper(
_load_model(path, flavor_conf.get(_MODEL_TYPE_KEY), flavor_conf.get(_SAVE_FORMAT_KEY))
)
[docs]def load_model(model_uri, dst_path=None):
"""
Load a CatBoost model from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
:param dst_path: The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.
:return: A CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_, `CatBoostRanker`_,
or `CatBoostRegressor`_)
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
cb_model_file_path = os.path.join(
local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME)
)
return _load_model(
cb_model_file_path, flavor_conf.get(_MODEL_TYPE_KEY), flavor_conf.get(_SAVE_FORMAT_KEY)
)
class _CatboostModelWrapper:
def __init__(self, cb_model):
self.cb_model = cb_model
def predict(self, dataframe):
return self.cb_model.predict(dataframe)
# TODO: Support autologging