"""
Internal package providing a Python CRUD interface to MLflow experiments, runs, registered models,
and model versions. This is a lower level API than the :py:mod:`mlflow.tracking.fluent` module,
and is exposed in the :py:mod:`mlflow.tracking` module.
"""
import mlflow
import contextlib
import logging
import json
import os
import posixpath
import sys
import tempfile
import yaml
from typing import Any, Dict, Sequence, List, Optional, Union, TYPE_CHECKING
from mlflow.entities import Experiment, Run, Param, Metric, RunTag, FileInfo, ViewType, DatasetInput
from mlflow.store.entities.paged_list import PagedList
from mlflow.entities.model_registry import RegisteredModel, ModelVersion
from mlflow.entities.model_registry.model_version_stages import ALL_STAGES
from mlflow.exceptions import MlflowException
from mlflow.protos.databricks_pb2 import FEATURE_DISABLED, RESOURCE_DOES_NOT_EXIST
from mlflow.store.model_registry import (
SEARCH_REGISTERED_MODEL_MAX_RESULTS_DEFAULT,
SEARCH_MODEL_VERSION_MAX_RESULTS_DEFAULT,
)
from mlflow.store.tracking import SEARCH_MAX_RESULTS_DEFAULT
from mlflow.tracking._model_registry.client import ModelRegistryClient
from mlflow.tracking._model_registry import utils as registry_utils
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking._tracking_service import utils
from mlflow.tracking._tracking_service.client import TrackingServiceClient
from mlflow.tracking.artifact_utils import _upload_artifacts_to_databricks
from mlflow.tracking.registry import UnsupportedModelRegistryStoreURIException
from mlflow.utils.annotations import deprecated, experimental
from mlflow.utils.databricks_utils import get_databricks_run_url
from mlflow.utils.logging_utils import eprint
from mlflow.utils.uri import is_databricks_uri, is_databricks_unity_catalog_uri
from mlflow.utils.validation import (
_validate_model_version_or_stage_exists,
_validate_model_name,
_validate_model_alias_name,
_validate_model_version,
)
from mlflow.utils.mlflow_tags import (
MLFLOW_LOGGED_ARTIFACTS,
MLFLOW_PARENT_RUN_ID,
)
if TYPE_CHECKING:
import pandas # pylint: disable=unused-import
import matplotlib # pylint: disable=unused-import
import plotly # pylint: disable=unused-import
import numpy # pylint: disable=unused-import
import PIL # pylint: disable=unused-import
_logger = logging.getLogger(__name__)
[docs]class MlflowClient:
"""
Client of an MLflow Tracking Server that creates and manages experiments and runs, and of an
MLflow Registry Server that creates and manages registered models and model versions. It's a
thin wrapper around TrackingServiceClient and RegistryClient so there is a unified API but we
can keep the implementation of the tracking and registry clients independent from each other.
"""
def __init__(self, tracking_uri: Optional[str] = None, registry_uri: Optional[str] = None):
"""
:param tracking_uri: Address of local or remote tracking server. If not provided, defaults
to the service set by ``mlflow.tracking.set_tracking_uri``. See
`Where Runs Get Recorded <../tracking.html#where-runs-get-recorded>`_
for more info.
:param registry_uri: Address of local or remote model registry server. If not provided,
defaults to the service set by ``mlflow.tracking.set_registry_uri``. If
no such service was set, defaults to the tracking uri of the client.
"""
final_tracking_uri = utils._resolve_tracking_uri(tracking_uri)
self._registry_uri = registry_utils._resolve_registry_uri(registry_uri, tracking_uri)
self._tracking_client = TrackingServiceClient(final_tracking_uri)
# `MlflowClient` also references a `ModelRegistryClient` instance that is provided by the
# `MlflowClient._get_registry_client()` method. This `ModelRegistryClient` is not explicitly
# defined as an instance variable in the `MlflowClient` constructor; an instance variable
# is assigned lazily by `MlflowClient._get_registry_client()` and should not be referenced
# outside of the `MlflowClient._get_registry_client()` method
@property
def tracking_uri(self):
return self._tracking_client.tracking_uri
def _get_registry_client(self):
"""
Attempts to create a py:class:`ModelRegistryClient` if one does not already exist.
:raises: py:class:`mlflow.exceptions.MlflowException` if the py:class:`ModelRegistryClient`
cannot be created. This may occur, for example, when the registry URI refers
to an unsupported store type (e.g., the FileStore).
:return: A py:class:`ModelRegistryClient` instance
"""
# Attempt to fetch a `ModelRegistryClient` that is lazily instantiated and defined as
# an instance variable on this `MlflowClient` instance. Because the instance variable
# is undefined until the first invocation of _get_registry_client(), the `getattr()`
# function is used to safely fetch the variable (if it is defined) or a NoneType
# (if it is not defined)
registry_client_attr = "_registry_client_lazy"
registry_client = getattr(self, registry_client_attr, None)
if registry_client is None:
try:
registry_client = ModelRegistryClient(self._registry_uri, self.tracking_uri)
# Define an instance variable on this `MlflowClient` instance to reference the
# `ModelRegistryClient` that was just constructed. `setattr()` is used to ensure
# that the variable name is consistent with the variable name specified in the
# preceding call to `getattr()`
setattr(self, registry_client_attr, registry_client)
except UnsupportedModelRegistryStoreURIException as exc:
raise MlflowException(
"Model Registry features are not supported by the store with URI:"
" '{uri}'. Stores with the following URI schemes are supported:"
" {schemes}.".format(uri=self._registry_uri, schemes=exc.supported_uri_schemes),
FEATURE_DISABLED,
)
return registry_client
# Tracking API
[docs] def get_run(self, run_id: str) -> Run:
"""
Fetch the run from backend store. The resulting :py:class:`Run <mlflow.entities.Run>`
contains a collection of run metadata -- :py:class:`RunInfo <mlflow.entities.RunInfo>`,
as well as a collection of run parameters, tags, and metrics --
:py:class:`RunData <mlflow.entities.RunData>`. It also contains a collection of run
inputs (experimental), including information about datasets used by the run --
:py:class:`RunInputs <mlflow.entities.RunInputs>`. In the case where multiple metrics with
the same key are logged for the run, the :py:class:`RunData <mlflow.entities.RunData>`
contains the most recently logged value at the largest step for each metric.
:param run_id: Unique identifier for the run.
:return: A single :py:class:`mlflow.entities.Run` object, if the run exists. Otherwise,
raises an exception.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
with mlflow.start_run() as run:
mlflow.log_param("p", 0)
# The run has finished since we have exited the with block
# Fetch the run
client = MlflowClient()
run = client.get_run(run.info.run_id)
print("run_id: {}".format(run.info.run_id))
print("params: {}".format(run.data.params))
print("status: {}".format(run.info.status))
.. code-block:: text
:caption: Output
run_id: e36b42c587a1413ead7c3b6764120618
params: {'p': '0'}
status: FINISHED
"""
return self._tracking_client.get_run(run_id)
[docs] def get_parent_run(self, run_id: str) -> Optional[Run]:
"""
Gets the parent run for the given run id if one exists.
:param run_id: Unique identifier for the child run.
:return: A single :py:class:`mlflow.entities.Run` object, if the parent run exists.
Otherwise, returns None.
.. test-code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
# Create nested runs
with mlflow.start_run():
with mlflow.start_run(nested=True) as child_run:
child_run_id = child_run.info.run_id
client = MlflowClient()
parent_run = client.get_parent_run(child_run_id)
print("child_run_id: {}".format(child_run_id))
print("parent_run_id: {}".format(parent_run.info.run_id))
.. code-block:: text
:caption: Output
child_run_id: 7d175204675e40328e46d9a6a5a7ee6a
parent_run_id: 8979459433a24a52ab3be87a229a9cdf
"""
child_run = self._tracking_client.get_run(run_id)
parent_run_id = child_run.data.tags.get(MLFLOW_PARENT_RUN_ID)
if parent_run_id is None:
return None
return self._tracking_client.get_run(parent_run_id)
[docs] def get_metric_history(self, run_id: str, key: str) -> List[Metric]:
"""
Return a list of metric objects corresponding to all values logged for a given metric.
:param run_id: Unique identifier for run
:param key: Metric name within the run
:return: A list of :py:class:`mlflow.entities.Metric` entities if logged, else empty list
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_metric_info(history):
for m in history:
print("name: {}".format(m.key))
print("value: {}".format(m.value))
print("step: {}".format(m.step))
print("timestamp: {}".format(m.timestamp))
print("--")
# Create a run under the default experiment (whose id is "0"). Since this is low-level
# CRUD operation, the method will create a run. To end the run, you'll have
# to explicitly end it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print("run_id: {}".format(run.info.run_id))
print("--")
# Log couple of metrics, update their initial value, and fetch each
# logged metrics' history.
for k, v in [("m1", 1.5), ("m2", 2.5)]:
client.log_metric(run.info.run_id, k, v, step=0)
client.log_metric(run.info.run_id, k, v + 1, step=1)
print_metric_info(client.get_metric_history(run.info.run_id, k))
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
run_id: c360d15714994c388b504fe09ea3c234
--
name: m1
value: 1.5
step: 0
timestamp: 1603423788607
--
name: m1
value: 2.5
step: 1
timestamp: 1603423788608
--
name: m2
value: 2.5
step: 0
timestamp: 1603423788609
--
name: m2
value: 3.5
step: 1
timestamp: 1603423788610
--
"""
return self._tracking_client.get_metric_history(run_id, key)
[docs] def create_run(
self,
experiment_id: str,
start_time: Optional[int] = None,
tags: Optional[Dict[str, Any]] = None,
run_name: Optional[str] = None,
) -> Run:
"""
Create a :py:class:`mlflow.entities.Run` object that can be associated with
metrics, parameters, artifacts, etc.
Unlike :py:func:`mlflow.projects.run`, creates objects but does not run code.
Unlike :py:func:`mlflow.start_run`, does not change the "active run" used by
:py:func:`mlflow.log_param`.
:param experiment_id: The string ID of the experiment to create a run in.
:param start_time: If not provided, use the current timestamp.
:param tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.RunTag` objects.
:param run_name: The name of this run.
:return: :py:class:`mlflow.entities.Run` that was created.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create a run with a tag under the default experiment (whose id is '0').
tags = {"engineering": "ML Platform"}
name = "platform-run-24"
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id, tags=tags, run_name=name)
# Show newly created run metadata info
print("Run tags: {}".format(run.data.tags))
print("Experiment id: {}".format(run.info.experiment_id))
print("Run id: {}".format(run.info.run_id))
print("Run name: {}".format(run.info.run_name))
print("lifecycle_stage: {}".format(run.info.lifecycle_stage))
print("status: {}".format(run.info.status))
.. code-block:: text
:caption: Output
Run tags: {'engineering': 'ML Platform'}
Experiment id: 0
Run id: 65fb9e2198764354bab398105f2e70c1
Run name: platform-run-24
lifecycle_stage: active
status: RUNNING
"""
return self._tracking_client.create_run(experiment_id, start_time, tags, run_name)
[docs] def search_experiments(
self,
view_type: int = ViewType.ACTIVE_ONLY,
max_results: Optional[int] = SEARCH_MAX_RESULTS_DEFAULT,
filter_string: Optional[str] = None,
order_by: Optional[List[str]] = None,
page_token=None,
) -> PagedList[Experiment]:
"""
Search for experiments that match the specified search query.
:param view_type: One of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``, or ``ALL``
defined in :py:class:`mlflow.entities.ViewType`.
:param max_results: Maximum number of experiments desired. Certain server backend may apply
its own limit.
:param filter_string:
Filter query string (e.g., ``"name = 'my_experiment'"``), defaults to searching for all
experiments. The following identifiers, comparators, and logical operators are
supported.
Identifiers
- ``name``: Experiment name
- ``creation_time``: Experiment creation time
- ``last_update_time``: Experiment last update time
- ``tags.<tag_key>``: Experiment tag. If ``tag_key`` contains
spaces, it must be wrapped with backticks (e.g., ``"tags.`extra key`"``).
Comparators for string attributes and tags
- ``=``: Equal to
- ``!=``: Not equal to
- ``LIKE``: Case-sensitive pattern match
- ``ILIKE``: Case-insensitive pattern match
Comparators for numeric attributes
- ``=``: Equal to
- ``!=``: Not equal to
- ``<``: Less than
- ``<=``: Less than or equal to
- ``>``: Greater than
- ``>=``: Greater than or equal to
Logical operators
- ``AND``: Combines two sub-queries and returns True if both of them are True.
:param order_by:
List of columns to order by. The ``order_by`` column can contain an optional ``DESC`` or
``ASC`` value (e.g., ``"name DESC"``). The default ordering is ``ASC``, so ``"name"`` is
equivalent to ``"name ASC"``. If unspecified, defaults to ``["last_update_time DESC"]``,
which lists experiments updated most recently first. The following fields are supported:
- ``experiment_id``: Experiment ID
- ``name``: Experiment name
- ``creation_time``: Experiment creation time
- ``last_update_time``: Experiment last update time
:param page_token: Token specifying the next page of results. It should be obtained from
a ``search_experiments`` call.
:return: A :py:class:`PagedList <mlflow.store.entities.PagedList>` of
:py:class:`Experiment <mlflow.entities.Experiment>` objects. The pagination token
for the next page can be obtained via the ``token`` attribute of the object.
.. code-block:: python
:caption: Example
import mlflow
def assert_experiment_names_equal(experiments, expected_names):
actual_names = [e.name for e in experiments if e.name != "Default"]
assert actual_names == expected_names, (actual_names, expected_names)
mlflow.set_tracking_uri("sqlite:///:memory:")
client = mlflow.MlflowClient()
# Create experiments
for name, tags in [
("a", None),
("b", None),
("ab", {"k": "v"}),
("bb", {"k": "V"}),
]:
client.create_experiment(name, tags=tags)
# Search for experiments with name "a"
experiments = client.search_experiments(filter_string="name = 'a'")
assert_experiment_names_equal(experiments, ["a"])
# Search for experiments with name starting with "a"
experiments = client.search_experiments(filter_string="name LIKE 'a%'")
assert_experiment_names_equal(experiments, ["ab", "a"])
# Search for experiments with tag key "k" and value ending with "v" or "V"
experiments = client.search_experiments(filter_string="tags.k ILIKE '%v'")
assert_experiment_names_equal(experiments, ["bb", "ab"])
# Search for experiments with name ending with "b" and tag {"k": "v"}
experiments = client.search_experiments(filter_string="name LIKE '%b' AND tags.k = 'v'")
assert_experiment_names_equal(experiments, ["ab"])
# Sort experiments by name in ascending order
experiments = client.search_experiments(order_by=["name"])
assert_experiment_names_equal(experiments, ["a", "ab", "b", "bb"])
# Sort experiments by ID in descending order
experiments = client.search_experiments(order_by=["experiment_id DESC"])
assert_experiment_names_equal(experiments, ["bb", "ab", "b", "a"])
"""
return self._tracking_client.search_experiments(
view_type=view_type,
max_results=max_results,
filter_string=filter_string,
order_by=order_by,
page_token=page_token,
)
[docs] def get_experiment(self, experiment_id: str) -> Experiment:
"""
Retrieve an experiment by experiment_id from the backend store
:param experiment_id: The experiment ID returned from ``create_experiment``.
:return: :py:class:`mlflow.entities.Experiment`
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
exp_id = client.create_experiment("Experiment")
experiment = client.get_experiment(exp_id)
# Show experiment info
print("Name: {}".format(experiment.name))
print("Experiment ID: {}".format(experiment.experiment_id))
print("Artifact Location: {}".format(experiment.artifact_location))
print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
.. code-block:: text
:caption: Output
Name: Experiment
Experiment ID: 1
Artifact Location: file:///.../mlruns/1
Lifecycle_stage: active
"""
return self._tracking_client.get_experiment(experiment_id)
[docs] def get_experiment_by_name(self, name: str) -> Optional[Experiment]:
"""
Retrieve an experiment by experiment name from the backend store
:param name: The experiment name, which is case sensitive.
:return: An instance of :py:class:`mlflow.entities.Experiment`
if an experiment with the specified name exists, otherwise None.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Case-sensitive name
client = MlflowClient()
experiment = client.get_experiment_by_name("Default")
# Show experiment info
print("Name: {}".format(experiment.name))
print("Experiment ID: {}".format(experiment.experiment_id))
print("Artifact Location: {}".format(experiment.artifact_location))
print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
.. code-block:: text
:caption: Output
Name: Default
Experiment ID: 0
Artifact Location: file:///.../mlruns/0
Lifecycle_stage: active
"""
return self._tracking_client.get_experiment_by_name(name)
[docs] def create_experiment(
self,
name: str,
artifact_location: Optional[str] = None,
tags: Optional[Dict[str, Any]] = None,
) -> str:
"""Create an experiment.
:param name: The experiment name. Must be unique.
:param artifact_location: The location to store run artifacts.
If not provided, the server picks an appropriate default.
:param tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.ExperimentTag` objects, set as
experiment tags upon experiment creation.
:return: String as an integer ID of the created experiment.
.. code-block:: python
:caption: Example
from pathlib import Path
from mlflow import MlflowClient
# Create an experiment with a name that is unique and case sensitive.
client = MlflowClient()
experiment_id = client.create_experiment(
"Social NLP Experiments",
artifact_location=Path.cwd().joinpath("mlruns").as_uri(),
tags={"version": "v1", "priority": "P1"},
)
client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP")
# Fetch experiment metadata information
experiment = client.get_experiment(experiment_id)
print("Name: {}".format(experiment.name))
print("Experiment_id: {}".format(experiment.experiment_id))
print("Artifact Location: {}".format(experiment.artifact_location))
print("Tags: {}".format(experiment.tags))
print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
.. code-block:: text
:caption: Output
Name: Social NLP Experiments
Experiment_id: 1
Artifact Location: file:///.../mlruns
Tags: {'version': 'v1', 'priority': 'P1', 'nlp.framework': 'Spark NLP'}
Lifecycle_stage: active
"""
return self._tracking_client.create_experiment(name, artifact_location, tags)
[docs] def delete_experiment(self, experiment_id: str) -> None:
"""
Delete an experiment from the backend store.
This deletion is a soft-delete, not a permanent deletion.
Experiment names can not be reused, unless the deleted experiment
is permanently deleted by a database admin.
:param experiment_id: The experiment ID returned from ``create_experiment``.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create an experiment with a name that is unique and case sensitive
client = MlflowClient()
experiment_id = client.create_experiment("New Experiment")
client.delete_experiment(experiment_id)
# Examine the deleted experiment details.
experiment = client.get_experiment(experiment_id)
print("Name: {}".format(experiment.name))
print("Artifact Location: {}".format(experiment.artifact_location))
print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
.. code-block:: text
:caption: Output
Name: New Experiment
Artifact Location: file:///.../mlruns/1
Lifecycle_stage: deleted
"""
self._tracking_client.delete_experiment(experiment_id)
[docs] def restore_experiment(self, experiment_id: str) -> None:
"""
Restore a deleted experiment unless permanently deleted.
:param experiment_id: The experiment ID returned from ``create_experiment``.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_experiment_info(experiment):
print("Name: {}".format(experiment.name))
print("Experiment Id: {}".format(experiment.experiment_id))
print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
# Create and delete an experiment
client = MlflowClient()
experiment_id = client.create_experiment("New Experiment")
client.delete_experiment(experiment_id)
# Examine the deleted experiment details.
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
print("--")
# Restore the experiment and fetch its info
client.restore_experiment(experiment_id)
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
.. code-block:: text
:caption: Output
Name: New Experiment
Experiment Id: 1
Lifecycle_stage: deleted
--
Name: New Experiment
Experiment Id: 1
Lifecycle_stage: active
"""
self._tracking_client.restore_experiment(experiment_id)
[docs] def rename_experiment(self, experiment_id: str, new_name: str) -> None:
"""
Update an experiment's name. The new name must be unique.
:param experiment_id: The experiment ID returned from ``create_experiment``.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_experiment_info(experiment):
print("Name: {}".format(experiment.name))
print("Experiment_id: {}".format(experiment.experiment_id))
print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
# Create an experiment with a name that is unique and case sensitive
client = MlflowClient()
experiment_id = client.create_experiment("Social NLP Experiments")
# Fetch experiment metadata information
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
print("--")
# Rename and fetch experiment metadata information
client.rename_experiment(experiment_id, "Social Media NLP Experiments")
experiment = client.get_experiment(experiment_id)
print_experiment_info(experiment)
.. code-block:: text
:caption: Output
Name: Social NLP Experiments
Experiment_id: 1
Lifecycle_stage: active
--
Name: Social Media NLP Experiments
Experiment_id: 1
Lifecycle_stage: active
"""
self._tracking_client.rename_experiment(experiment_id, new_name)
[docs] def log_metric(
self,
run_id: str,
key: str,
value: float,
timestamp: Optional[int] = None,
step: Optional[int] = None,
) -> None:
"""
Log a metric against the run ID.
:param run_id: The run id to which the metric should be logged.
:param key: Metric name (string). This string may only contain alphanumerics, underscores
(_), dashes (-), periods (.), spaces ( ), and slashes (/).
All backend stores will support keys up to length 250, but some may
support larger keys.
:param value: Metric value (float). Note that some special values such
as +/- Infinity may be replaced by other values depending on the store. For
example, the SQLAlchemy store replaces +/- Inf with max / min float values.
All backend stores will support values up to length 5000, but some
may support larger values.
:param timestamp: Time when this metric was calculated. Defaults to the current system time.
:param step: Integer training step (iteration) at which was the metric calculated.
Defaults to 0.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(r):
print("run_id: {}".format(r.info.run_id))
print("metrics: {}".format(r.data.metrics))
print("status: {}".format(r.info.status))
# Create a run under the default experiment (whose id is '0').
# Since these are low-level CRUD operations, this method will create a run.
# To end the run, you'll have to explicitly end it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Log the metric. Unlike mlflow.log_metric this method
# does not start a run if one does not exist. It will log
# the metric for the run id in the backend store.
client.log_metric(run.info.run_id, "m", 1.5)
client.set_terminated(run.info.run_id)
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: 95e79843cb2c463187043d9065185e24
metrics: {}
status: RUNNING
--
run_id: 95e79843cb2c463187043d9065185e24
metrics: {'m': 1.5}
status: FINISHED
"""
self._tracking_client.log_metric(run_id, key, value, timestamp, step)
[docs] def log_param(self, run_id: str, key: str, value: Any) -> Any:
"""
Log a parameter (e.g. model hyperparameter) against the run ID.
:param run_id: The run id to which the param should be logged.
:param key: Parameter name (string). This string may only contain alphanumerics, underscores
(_), dashes (-), periods (.), spaces ( ), and slashes (/).
All backend stores support keys up to length 250, but some may
support larger keys.
:param value: Parameter value (string, but will be string-ified if not).
All backend stores support values up to length 500, but some
may support larger values.
:return: the parameter value that is logged.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(r):
print("run_id: {}".format(r.info.run_id))
print("params: {}".format(r.data.params))
print("status: {}".format(r.info.status))
# Create a run under the default experiment (whose id is '0').
# Since these are low-level CRUD operations, this method will create a run.
# To end the run, you'll have to explicitly end it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Log the parameter. Unlike mlflow.log_param this method
# does not start a run if one does not exist. It will log
# the parameter in the backend store
p_value = client.log_param(run.info.run_id, "p", 1)
assert p_value == 1
client.set_terminated(run.info.run_id)
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: e649e49c7b504be48ee3ae33c0e76c93
params: {}
status: RUNNING
--
run_id: e649e49c7b504be48ee3ae33c0e76c93
params: {'p': '1'}
status: FINISHED
"""
self._tracking_client.log_param(run_id, key, value)
return value
[docs] def set_experiment_tag(self, experiment_id: str, key: str, value: Any) -> None:
"""
Set a tag on the experiment with the specified ID. Value is converted to a string.
:param experiment_id: String ID of the experiment.
:param key: Name of the tag.
:param value: Tag value (converted to a string).
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create an experiment and set its tag
client = MlflowClient()
experiment_id = client.create_experiment("Social Media NLP Experiments")
client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP")
# Fetch experiment metadata information
experiment = client.get_experiment(experiment_id)
print("Name: {}".format(experiment.name))
print("Tags: {}".format(experiment.tags))
.. code-block:: text
:caption: Output
Name: Social Media NLP Experiments
Tags: {'nlp.framework': 'Spark NLP'}
"""
self._tracking_client.set_experiment_tag(experiment_id, key, value)
[docs] def set_tag(self, run_id: str, key: str, value: Any) -> None:
"""
Set a tag on the run with the specified ID. Value is converted to a string.
:param run_id: String ID of the run.
:param key: Tag name (string). This string may only contain alphanumerics,
underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/).
All backend stores will support keys up to length 250, but some may
support larger keys.
:param value: Tag value (string, but will be string-ified if not).
All backend stores will support values up to length 5000, but some
may support larger values.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(run):
print("run_id: {}".format(run.info.run_id))
print("Tags: {}".format(run.data.tags))
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Set a tag and fetch updated run info
client.set_tag(run.info.run_id, "nlp.framework", "Spark NLP")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: 4f226eb5758145e9b28f78514b59a03b
Tags: {}
--
run_id: 4f226eb5758145e9b28f78514b59a03b
Tags: {'nlp.framework': 'Spark NLP'}
"""
self._tracking_client.set_tag(run_id, key, value)
[docs] def delete_tag(self, run_id: str, key: str) -> None:
"""
Delete a tag from a run. This is irreversible.
:param run_id: String ID of the run
:param key: Name of the tag
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(run):
print("run_id: {}".format(run.info.run_id))
print("Tags: {}".format(run.data.tags))
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
tags = {"t1": 1, "t2": 2}
experiment_id = "0"
run = client.create_run(experiment_id, tags=tags)
print_run_info(run)
print("--")
# Delete tag and fetch updated info
client.delete_tag(run.info.run_id, "t1")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: b7077267a59a45d78cd9be0de4bc41f5
Tags: {'t2': '2', 't1': '1'}
--
run_id: b7077267a59a45d78cd9be0de4bc41f5
Tags: {'t2': '2'}
"""
self._tracking_client.delete_tag(run_id, key)
[docs] def update_run(
self, run_id: str, status: Optional[str] = None, name: Optional[str] = None
) -> None:
"""
Update a run with the specified ID to a new status or name.
:param run_id: The ID of the Run to update.
:param status: The new status of the run to set, if specified.
At least one of ``status`` or ``name`` should be specified.
:param name: The new name of the run to set, if specified.
At least one of ``name`` or ``status`` should be specified.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(run):
print("run_id: {}".format(run.info.run_id))
print("run_name: {}".format(run.info.run_name))
print("status: {}".format(run.info.status))
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Update run and fetch info
client.update_run(run.info.run_id, "FINISHED", "new_name")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: 1cf6bf8bf6484dd8a598bd43be367b20
run_name: judicious-hog-915
status: RUNNING
--
run_id: 1cf6bf8bf6484dd8a598bd43be367b20
run_name: new_name
status: FINISHED
"""
self._tracking_client.update_run(run_id, status, name)
[docs] def log_batch(
self,
run_id: str,
metrics: Sequence[Metric] = (),
params: Sequence[Param] = (),
tags: Sequence[RunTag] = (),
) -> None:
"""
Log multiple metrics, params, and/or tags.
:param run_id: String ID of the run
:param metrics: If provided, List of Metric(key, value, timestamp) instances.
:param params: If provided, List of Param(key, value) instances.
:param tags: If provided, List of RunTag(key, value) instances.
Raises an MlflowException if any errors occur.
:return: None
.. code-block:: python
:caption: Example
import time
from mlflow import MlflowClient
from mlflow.entities import Metric, Param, RunTag
def print_run_info(r):
print("run_id: {}".format(r.info.run_id))
print("params: {}".format(r.data.params))
print("metrics: {}".format(r.data.metrics))
print("tags: {}".format(r.data.tags))
print("status: {}".format(r.info.status))
# Create MLflow entities and a run under the default experiment (whose id is '0').
timestamp = int(time.time() * 1000)
metrics = [Metric("m", 1.5, timestamp, 1)]
params = [Param("p", "p")]
tags = [RunTag("t", "t")]
experiment_id = "0"
client = MlflowClient()
run = client.create_run(experiment_id)
# Log entities, terminate the run, and fetch run status
client.log_batch(run.info.run_id, metrics=metrics, params=params, tags=tags)
client.set_terminated(run.info.run_id)
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: ef0247fa3205410595acc0f30f620871
params: {'p': 'p'}
metrics: {'m': 1.5}
tags: {'t': 't'}
status: FINISHED
"""
self._tracking_client.log_batch(run_id, metrics, params, tags)
[docs] def log_artifact(self, run_id, local_path, artifact_path=None) -> None:
"""
Write a local file or directory to the remote ``artifact_uri``.
:param local_path: Path to the file or directory to write.
:param artifact_path: If provided, the directory in ``artifact_uri`` to write to.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
features = "rooms, zipcode, median_price, school_rating, transport"
with open("features.txt", "w") as f:
f.write(features)
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
# log and fetch the artifact
client.log_artifact(run.info.run_id, "features.txt")
artifacts = client.list_artifacts(run.info.run_id)
for artifact in artifacts:
print("artifact: {}".format(artifact.path))
print("is_dir: {}".format(artifact.is_dir))
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
artifact: features.txt
is_dir: False
"""
self._tracking_client.log_artifact(run_id, local_path, artifact_path)
[docs] def log_artifacts(
self, run_id: str, local_dir: str, artifact_path: Optional[str] = None
) -> None:
"""
Write a directory of files to the remote ``artifact_uri``.
:param local_dir: Path to the directory of files to write.
:param artifact_path: If provided, the directory in ``artifact_uri`` to write to.
.. code-block:: python
:caption: Example
import os
import json
# Create some artifacts data to preserve
features = "rooms, zipcode, median_price, school_rating, transport"
data = {"state": "TX", "Available": 25, "Type": "Detached"}
# Create couple of artifact files under the local directory "data"
os.makedirs("data", exist_ok=True)
with open("data/data.json", "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
with open("data/features.txt", "w") as f:
f.write(features)
# Create a run under the default experiment (whose id is '0'), and log
# all files in "data" to root artifact_uri/states
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
client.log_artifacts(run.info.run_id, "data", artifact_path="states")
artifacts = client.list_artifacts(run.info.run_id)
for artifact in artifacts:
print("artifact: {}".format(artifact.path))
print("is_dir: {}".format(artifact.is_dir))
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
artifact: states
is_dir: True
"""
self._tracking_client.log_artifacts(run_id, local_dir, artifact_path)
@contextlib.contextmanager
def _log_artifact_helper(self, run_id, artifact_file):
"""
Yields a temporary path to store a file, and then calls `log_artifact` against that path.
:param run_id: String ID of the run.
:param artifact_file: The run-relative artifact file path in posixpath format.
:return: Temporary path to store a file.
"""
norm_path = posixpath.normpath(artifact_file)
filename = posixpath.basename(norm_path)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = os.path.join(tmp_dir, filename)
yield tmp_path
self.log_artifact(run_id, tmp_path, artifact_dir)
[docs] def log_text(self, run_id: str, text: str, artifact_file: str) -> None:
"""
Log text as an artifact.
:param run_id: String ID of the run.
:param text: String containing text to log.
:param artifact_file: The run-relative artifact file path in posixpath format to which
the text is saved (e.g. "dir/file.txt").
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
run = client.create_run(experiment_id="0")
# Log text to a file under the run's root artifact directory
client.log_text(run.info.run_id, "text1", "file1.txt")
# Log text in a subdirectory of the run's root artifact directory
client.log_text(run.info.run_id, "text2", "dir/file2.txt")
# Log HTML text
client.log_text(run.info.run_id, "<h1>header</h1>", "index.html")
"""
with self._log_artifact_helper(run_id, artifact_file) as tmp_path:
with open(tmp_path, "w", encoding="utf-8") as f:
f.write(text)
[docs] def log_dict(self, run_id: str, dictionary: Dict[str, Any], artifact_file: str) -> None:
"""
Log a JSON/YAML-serializable object (e.g. `dict`) as an artifact. The serialization
format (JSON or YAML) is automatically inferred from the extension of `artifact_file`.
If the file extension doesn't exist or match any of [".json", ".yml", ".yaml"],
JSON format is used.
:param run_id: String ID of the run.
:param dictionary: Dictionary to log.
:param artifact_file: The run-relative artifact file path in posixpath format to which
the dictionary is saved (e.g. "dir/data.json").
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
client = MlflowClient()
run = client.create_run(experiment_id="0")
run_id = run.info.run_id
dictionary = {"k": "v"}
# Log a dictionary as a JSON file under the run's root artifact directory
client.log_dict(run_id, dictionary, "data.json")
# Log a dictionary as a YAML file in a subdirectory of the run's root artifact directory
client.log_dict(run_id, dictionary, "dir/data.yml")
# If the file extension doesn't exist or match any of [".json", ".yaml", ".yml"],
# JSON format is used.
mlflow.log_dict(run_id, dictionary, "data")
mlflow.log_dict(run_id, dictionary, "data.txt")
"""
extension = os.path.splitext(artifact_file)[1]
with self._log_artifact_helper(run_id, artifact_file) as tmp_path:
with open(tmp_path, "w") as f:
# Specify `indent` to prettify the output
if extension in [".yml", ".yaml"]:
yaml.dump(dictionary, f, indent=2, default_flow_style=False)
else:
json.dump(dictionary, f, indent=2)
[docs] def log_image(
self, run_id: str, image: Union["numpy.ndarray", "PIL.Image.Image"], artifact_file: str
) -> None:
"""
Log an image as an artifact. The following image objects are supported:
- `numpy.ndarray`_
- `PIL.Image.Image`_
.. _numpy.ndarray:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
.. _PIL.Image.Image:
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
Numpy array support
- data type (( ) represents a valid value range):
- bool
- integer (0 ~ 255)
- unsigned integer (0 ~ 255)
- float (0.0 ~ 1.0)
.. warning::
- Out-of-range integer values will be **clipped** to [0, 255].
- Out-of-range float values will be **clipped** to [0, 1].
- shape (H: height, W: width):
- H x W (Grayscale)
- H x W x 1 (Grayscale)
- H x W x 3 (an RGB channel order is assumed)
- H x W x 4 (an RGBA channel order is assumed)
:param run_id: String ID of the run.
:param image: Image to log.
:param artifact_file: The run-relative artifact file path in posixpath format to which
the image is saved (e.g. "dir/image.png").
.. code-block:: python
:caption: Numpy Example
import mlflow
import numpy as np
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
run = client.create_run(experiment_id="0")
client.log_image(run.info.run_id, image, "image.png")
.. code-block:: python
:caption: Pillow Example
import mlflow
from PIL import Image
image = Image.new("RGB", (100, 100))
run = client.create_run(experiment_id="0")
client.log_image(run.info.run_id, image, "image.png")
"""
def _is_pillow_image(image):
from PIL.Image import Image
return isinstance(image, Image)
def _is_numpy_array(image):
import numpy as np
return isinstance(image, np.ndarray)
def _normalize_to_uint8(x):
# Based on: https://github.com/matplotlib/matplotlib/blob/06567e021f21be046b6d6dcf00380c1cb9adaf3c/lib/matplotlib/image.py#L684
is_int = np.issubdtype(x.dtype, np.integer)
low = 0
high = 255 if is_int else 1
if x.min() < low or x.max() > high:
msg = (
"Out-of-range values are detected. "
"Clipping array (dtype: '{}') to [{}, {}]".format(x.dtype, low, high)
)
_logger.warning(msg)
x = np.clip(x, low, high)
# float or bool
if not is_int:
x = x * 255
return x.astype(np.uint8)
with self._log_artifact_helper(run_id, artifact_file) as tmp_path:
if "PIL" in sys.modules and _is_pillow_image(image):
image.save(tmp_path)
elif "numpy" in sys.modules and _is_numpy_array(image):
import numpy as np
try:
from PIL import Image
except ImportError as exc:
raise ImportError(
"`log_image` requires Pillow to serialize a numpy array as an image. "
"Please install it via: pip install Pillow"
) from exc
# Ref.: https://numpy.org/doc/stable/reference/generated/numpy.dtype.kind.html#numpy-dtype-kind
valid_data_types = {
"b": "bool",
"i": "signed integer",
"u": "unsigned integer",
"f": "floating",
}
if image.dtype.kind not in valid_data_types:
raise TypeError(
f"Invalid array data type: '{image.dtype}'. "
f"Must be one of {list(valid_data_types.values())}"
)
if image.ndim not in [2, 3]:
raise ValueError(
"`image` must be a 2D or 3D array but got a {}D array".format(image.ndim)
)
if (image.ndim == 3) and (image.shape[2] not in [1, 3, 4]):
raise ValueError(
"Invalid channel length: {}. Must be one of [1, 3, 4]".format(
image.shape[2]
)
)
# squeeze a 3D grayscale image since `Image.fromarray` doesn't accept it.
if image.ndim == 3 and image.shape[2] == 1:
image = image[:, :, 0]
image = _normalize_to_uint8(image)
Image.fromarray(image).save(tmp_path)
else:
raise TypeError("Unsupported image object type: '{}'".format(type(image)))
def _check_artifact_file_string(self, artifact_file: str):
"""
Check if the artifact_file contains any forbidden characters.
:param artifact_file: The run-relative artifact file path in posixpath format to which
the table is saved (e.g. "dir/file.json").
"""
characters_to_check = ['"', "'", ",", ":", "[", "]", "{", "}"]
for char in characters_to_check:
if char in artifact_file:
raise ValueError(f"The artifact_file contains forbidden character: {char}")
[docs] @experimental
def log_table(
self,
run_id: str,
data: Union[Dict[str, Any], "pandas.DataFrame"],
artifact_file: str,
) -> None:
"""
Log a table to MLflow Tracking as a JSON artifact. If the artifact_file already exists
in the run, the data would be appended to the existing artifact_file.
:param run_id: String ID of the run.
:param data: Dictionary or pandas.DataFrame to log.
:param artifact_file: The run-relative artifact file path in posixpath format to which
the table is saved (e.g. "dir/file.json").
:return: None
.. test-code-block:: python
:caption: Dictionary Example
import mlflow
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
client = MlflowClient()
run = client.create_run(experiment_id="0")
client.log_table(
run.info.run_id, data=table_dict, artifact_file="qabot_eval_results.json"
)
.. test-code-block:: python
:caption: Pandas DF Example
import mlflow
import pandas as pd
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
df = pd.DataFrame.from_dict(table_dict)
client = MlflowClient()
run = client.create_run(experiment_id="0")
client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
"""
import pandas as pd
self._check_artifact_file_string(artifact_file)
if not isinstance(data, (pd.DataFrame, dict)):
raise MlflowException.invalid_parameter_value(
"data must be a pandas.DataFrame or a dictionary"
)
data = pd.DataFrame(data)
norm_path = posixpath.normpath(artifact_file)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
artifacts = [f.path for f in self.list_artifacts(run_id, path=artifact_dir)]
if artifact_file in artifacts:
with tempfile.TemporaryDirectory() as tmpdir:
downloaded_artifact_path = mlflow.artifacts.download_artifacts(
run_id=run_id, artifact_path=artifact_file, dst_path=tmpdir
)
existing_predictions = pd.read_json(downloaded_artifact_path, orient="split")
data = pd.concat([existing_predictions, data], ignore_index=True)
_logger.info(
"Appending new table to already existing artifact "
f"{artifact_file} for run {run_id}."
)
with self._log_artifact_helper(run_id, artifact_file) as artifact_path:
data.to_json(artifact_path, orient="split", index=False)
run = self.get_run(run_id)
# Get the current value of the tag
current_tag_value = json.loads(run.data.tags.get(MLFLOW_LOGGED_ARTIFACTS, "[]"))
tag_value = {"path": artifact_file, "type": "table"}
# Append the new tag value to the list if one doesn't exists
if tag_value not in current_tag_value:
current_tag_value.append(tag_value)
# Set the tag with the updated list
self.set_tag(run_id, MLFLOW_LOGGED_ARTIFACTS, json.dumps(current_tag_value))
[docs] @experimental
def load_table(
self,
experiment_id: str,
artifact_file: str,
run_ids: Optional[List[str]] = None,
extra_columns: Optional[List[str]] = None,
) -> "pandas.DataFrame":
"""
Load a table from MLflow Tracking as a pandas.DataFrame. The table is loaded from the
specified artifact_file in the specified run_ids. The extra_columns are columns that
are not in the table but are augmented with run information and added to the DataFrame.
:param experiment_id: The experiment ID to load the table from.
:param artifact_file: The run-relative artifact file path in posixpath format to which
table to load (e.g. "dir/file.json").
:param run_ids: Optional list of run_ids to load the table from. If no run_ids are
specified, the table is loaded from all runs in the current experiment.
:param extra_columns: Optional list of extra columns to add to the returned DataFrame
For example, if extra_columns=["run_id"], then the returned DataFrame
will have a column named run_id.
:return: pandas.DataFrame containing the loaded table if the artifact exists
or else throw a MlflowException.
.. test-code-block:: python
:caption: Example with passing run_ids
import mlflow
import pandas as pd
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
df = pd.DataFrame.from_dict(table_dict)
client = MlflowClient()
run = client.create_run(experiment_id="0")
client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
loaded_table = client.load_table(
experiment_id="0",
artifact_file="qabot_eval_results.json",
run_ids=[
run.info.run_id,
],
# Append a column containing the associated run ID for each row
extra_columns=["run_id"],
)
.. test-code-block:: python
:caption: Example with passing no run_ids
# Loads the table with the specified name for all runs in the given
# experiment and joins them together
import mlflow
import pandas as pd
from mlflow import MlflowClient
table_dict = {
"inputs": ["What is MLflow?", "What is Databricks?"],
"outputs": ["MLflow is ...", "Databricks is ..."],
"toxicity": [0.0, 0.0],
}
df = pd.DataFrame.from_dict(table_dict)
client = MlflowClient()
run = client.create_run(experiment_id="0")
client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
loaded_table = client.load_table(
experiment_id="0",
artifact_file="qabot_eval_results.json",
# Append the run ID and the parent run ID to the table
extra_columns=["run_id"],
)
"""
import pandas as pd
self._check_artifact_file_string(artifact_file)
subset_tag_value = json.dumps({"path": artifact_file, "type": "table"})
# Build the filter string
filter_string = f"tags.{MLFLOW_LOGGED_ARTIFACTS} LIKE '%{subset_tag_value}%'"
if run_ids:
list_run_ids = ",".join(map(repr, run_ids))
filter_string += f" and attributes.run_id IN ({list_run_ids})"
runs = mlflow.search_runs(experiment_ids=[experiment_id], filter_string=filter_string)
if run_ids and len(run_ids) != len(runs):
_logger.warning(
"Not all runs have the specified table artifact. Some runs will be skipped."
)
# TODO: Add parallelism support here
def get_artifact_data(run):
run_id = run.run_id
norm_path = posixpath.normpath(artifact_file)
artifact_dir = posixpath.dirname(norm_path)
artifact_dir = None if artifact_dir == "" else artifact_dir
existing_predictions = pd.DataFrame()
artifacts = [
f.path for f in self.list_artifacts(run_id, path=artifact_dir) if not f.is_dir
]
if artifact_file in artifacts:
with tempfile.TemporaryDirectory() as tmpdir:
downloaded_artifact_path = mlflow.artifacts.download_artifacts(
run_id=run_id, artifact_path=artifact_file, dst_path=tmpdir
)
existing_predictions = pd.read_json(downloaded_artifact_path, orient="split")
if extra_columns is not None:
for column in extra_columns:
if column in existing_predictions:
column_name = f"{column}_"
_logger.warning(
f"Column name {column} already exists in the table. "
"Resolving the conflict, by appending an underscore "
"to the column name."
)
else:
column_name = column
existing_predictions[column_name] = run[column]
else:
raise MlflowException(
f"Artifact {artifact_file} not found for run {run_id}.", RESOURCE_DOES_NOT_EXIST
)
return existing_predictions
if not runs.empty:
return pd.concat(
[get_artifact_data(run) for _, run in runs.iterrows()], ignore_index=True
)
else:
raise MlflowException(
"No runs found with the corresponding table artifact.", RESOURCE_DOES_NOT_EXIST
)
def _record_logged_model(self, run_id, mlflow_model):
"""
Record logged model info with the tracking server.
:param run_id: run_id under which the model has been logged.
:param mlflow_model: Model info to be recorded.
"""
self._tracking_client._record_logged_model(run_id, mlflow_model)
[docs] def list_artifacts(self, run_id: str, path=None) -> List[FileInfo]:
"""
List the artifacts for a run.
:param run_id: The run to list artifacts from.
:param path: The run's relative artifact path to list from. By default it is set to None
or the root artifact path.
:return: List of :py:class:`mlflow.entities.FileInfo`
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_artifact_info(artifact):
print("artifact: {}".format(artifact.path))
print("is_dir: {}".format(artifact.is_dir))
print("size: {}".format(artifact.file_size))
features = "rooms zipcode, median_price, school_rating, transport"
labels = "price"
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
# Create some artifacts and log under the above run
for file, content in [("features", features), ("labels", labels)]:
with open("{}.txt".format(file), "w") as f:
f.write(content)
client.log_artifact(run.info.run_id, "{}.txt".format(file))
# Fetch the logged artifacts
artifacts = client.list_artifacts(run.info.run_id)
for artifact in artifacts:
print_artifact_info(artifact)
client.set_terminated(run.info.run_id)
.. code-block:: text
:caption: Output
artifact: features.txt
is_dir: False
size: 53
artifact: labels.txt
is_dir: False
size: 5
"""
return self._tracking_client.list_artifacts(run_id, path)
[docs] @deprecated("mlflow.artifacts.download_artifacts", "2.0")
def download_artifacts(self, run_id: str, path: str, dst_path: Optional[str] = None) -> str:
"""
Download an artifact file or directory from a run to a local directory if applicable,
and return a local path for it.
:param run_id: The run to download artifacts from.
:param path: Relative source path to the desired artifact.
:param dst_path: Absolute path of the local filesystem destination directory to which to
download the specified artifacts. This directory must already exist.
If unspecified, the artifacts will either be downloaded to a new
uniquely-named directory on the local filesystem or will be returned
directly in the case of the LocalArtifactRepository.
:return: Local path of desired artifact.
.. code-block:: python
:caption: Example
import os
import mlflow
from mlflow import MlflowClient
features = "rooms, zipcode, median_price, school_rating, transport"
with open("features.txt", "w") as f:
f.write(features)
# Log artifacts
with mlflow.start_run() as run:
mlflow.log_artifact("features.txt", artifact_path="features")
# Download artifacts
client = MlflowClient()
local_dir = "/tmp/artifact_downloads"
if not os.path.exists(local_dir):
os.mkdir(local_dir)
local_path = client.download_artifacts(run.info.run_id, "features", local_dir)
print("Artifacts downloaded in: {}".format(local_path))
print("Artifacts: {}".format(os.listdir(local_path)))
.. code-block:: text
:caption: Output
Artifacts downloaded in: /tmp/artifact_downloads/features
Artifacts: ['features.txt']
"""
return self._tracking_client.download_artifacts(run_id, path, dst_path)
[docs] def set_terminated(
self, run_id: str, status: Optional[str] = None, end_time: Optional[int] = None
) -> None:
"""Set a run's status to terminated.
:param status: A string value of :py:class:`mlflow.entities.RunStatus`.
Defaults to "FINISHED".
:param end_time: If not provided, defaults to the current time.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
def print_run_info(r):
print("run_id: {}".format(r.info.run_id))
print("status: {}".format(r.info.status))
# Create a run under the default experiment (whose id is '0').
# Since this is low-level CRUD operation, this method will create a run.
# To end the run, you'll have to explicitly terminate it.
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
print_run_info(run)
print("--")
# Terminate the run and fetch updated status. By default,
# the status is set to "FINISHED". Other values you can
# set are "KILLED", "FAILED", "RUNNING", or "SCHEDULED".
client.set_terminated(run.info.run_id, status="KILLED")
run = client.get_run(run.info.run_id)
print_run_info(run)
.. code-block:: text
:caption: Output
run_id: 575fb62af83f469e84806aee24945973
status: RUNNING
--
run_id: 575fb62af83f469e84806aee24945973
status: KILLED
"""
self._tracking_client.set_terminated(run_id, status, end_time)
[docs] def delete_run(self, run_id: str) -> None:
"""Deletes a run with the given ID.
:param run_id: The unique run id to delete.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
run_id = run.info.run_id
print("run_id: {}; lifecycle_stage: {}".format(run_id, run.info.lifecycle_stage))
print("--")
client.delete_run(run_id)
del_run = client.get_run(run_id)
print("run_id: {}; lifecycle_stage: {}".format(run_id, del_run.info.lifecycle_stage))
.. code-block:: text
:caption: Output
run_id: a61c7a1851324f7094e8d5014c58c8c8; lifecycle_stage: active
run_id: a61c7a1851324f7094e8d5014c58c8c8; lifecycle_stage: deleted
"""
self._tracking_client.delete_run(run_id)
[docs] def restore_run(self, run_id: str) -> None:
"""
Restores a deleted run with the given ID.
:param run_id: The unique run id to restore.
.. code-block:: python
:caption: Example
from mlflow import MlflowClient
# Create a run under the default experiment (whose id is '0').
client = MlflowClient()
experiment_id = "0"
run = client.create_run(experiment_id)
run_id = run.info.run_id
print("run_id: {}; lifecycle_stage: {}".format(run_id, run.info.lifecycle_stage))
client.delete_run(run_id)
del_run = client.get_run(run_id)
print("run_id: {}; lifecycle_stage: {}".format(run_id, del_run.info.lifecycle_stage))
client.restore_run(run_id)
rest_run = client.get_run(run_id)
print("run_id: {}; lifecycle_stage: {}".format(run_id, rest_run.info.lifecycle_stage))
.. code-block:: text
:caption: Output
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: active
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: deleted
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: active
"""
self._tracking_client.restore_run(run_id)
[docs] def search_runs(
self,
experiment_ids: List[str],
filter_string: str = "",
run_view_type: int = ViewType.ACTIVE_ONLY,
max_results: int = SEARCH_MAX_RESULTS_DEFAULT,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[Run]:
"""
Search for Runs that fit the specified criteria.
:param experiment_ids: List of experiment IDs, or a single int or string id.
:param filter_string: Filter query string, defaults to searching all runs.
:param run_view_type: one of enum values ACTIVE_ONLY, DELETED_ONLY, or ALL runs
defined in :py:class:`mlflow.entities.ViewType`.
:param max_results: Maximum number of runs desired.
:param order_by: List of columns to order by (e.g., "metrics.rmse"). The ``order_by`` column
can contain an optional ``DESC`` or ``ASC`` value. The default is ``ASC``.
The default ordering is to sort by ``start_time DESC``, then ``run_id``.
:param page_token: Token specifying the next page of results. It should be obtained from
a ``search_runs`` call.
:return: A :py:class:`PagedList <mlflow.store.entities.PagedList>` of
:py:class:`Run <mlflow.entities.Run>` objects that satisfy the search expressions.
If the underlying tracking store supports pagination, the token for the next page may
be obtained via the ``token`` attribute of the returned object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.entities import ViewType
def print_run_info(runs):
for r in runs:
print("run_id: {}".format(r.info.run_id))
print("lifecycle_stage: {}".format(r.info.lifecycle_stage))
print("metrics: {}".format(r.data.metrics))
# Exclude mlflow system tags
tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")}
print("tags: {}".format(tags))
# Create an experiment and log two runs with metrics and tags under the experiment
experiment_id = mlflow.create_experiment("Social NLP Experiments")
with mlflow.start_run(experiment_id=experiment_id) as run:
mlflow.log_metric("m", 1.55)
mlflow.set_tag("s.release", "1.1.0-RC")
with mlflow.start_run(experiment_id=experiment_id):
mlflow.log_metric("m", 2.50)
mlflow.set_tag("s.release", "1.2.0-GA")
# Search all runs under experiment id and order them by
# descending value of the metric 'm'
client = MlflowClient()
runs = client.search_runs(experiment_id, order_by=["metrics.m DESC"])
print_run_info(runs)
print("--")
# Delete the first run
client.delete_run(run_id=run.info.run_id)
# Search only deleted runs under the experiment id and use a case insensitive pattern
# in the filter_string for the tag.
filter_string = "tags.s.release ILIKE '%rc%'"
runs = client.search_runs(
experiment_id, run_view_type=ViewType.DELETED_ONLY, filter_string=filter_string
)
print_run_info(runs)
.. code-block:: text
:caption: Output
run_id: 0efb2a68833d4ee7860a964fad31cb3f
lifecycle_stage: active
metrics: {'m': 2.5}
tags: {'s.release': '1.2.0-GA'}
run_id: 7ab027fd72ee4527a5ec5eafebb923b8
lifecycle_stage: active
metrics: {'m': 1.55}
tags: {'s.release': '1.1.0-RC'}
--
run_id: 7ab027fd72ee4527a5ec5eafebb923b8
lifecycle_stage: deleted
metrics: {'m': 1.55}
tags: {'s.release': '1.1.0-RC'}
"""
return self._tracking_client.search_runs(
experiment_ids, filter_string, run_view_type, max_results, order_by, page_token
)
# Registry API
# Registered Model Methods
[docs] def create_registered_model(
self, name: str, tags: Optional[Dict[str, Any]] = None, description: Optional[str] = None
) -> RegisteredModel:
"""
Create a new registered model in backend store.
:param name: Name of the new model. This is expected to be unique in the backend store.
:param tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.model_registry.RegisteredModelTag` objects.
:param description: Description of the model.
:return: A single object of :py:class:`mlflow.entities.model_registry.RegisteredModel`
created by backend.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_model_info(rm):
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
print("description: {}".format(rm.description))
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
client.create_registered_model(name, tags, desc)
print_registered_model_info(client.get_registered_model(name))
.. code-block:: text
:caption: Output
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
"""
return self._get_registry_client().create_registered_model(name, tags, description)
[docs] def rename_registered_model(self, name: str, new_name: str) -> RegisteredModel:
"""
Update registered model name.
:param name: Name of the registered model to update.
:param new_name: New proposed name for the registered model.
:return: A single updated :py:class:`mlflow.entities.model_registry.RegisteredModel` object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_model_info(rm):
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
print("description: {}".format(rm.description))
name = "SocialTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
# create a new registered model name
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
client.create_registered_model(name, tags, desc)
print_registered_model_info(client.get_registered_model(name))
print("--")
# rename the model
new_name = "SocialMediaTextAnalyzer"
client.rename_registered_model(name, new_name)
print_registered_model_info(client.get_registered_model(new_name))
.. code-block:: text
:caption: Output
name: SocialTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
"""
self._get_registry_client().rename_registered_model(name, new_name)
[docs] def update_registered_model(
self, name: str, description: Optional[str] = None
) -> RegisteredModel:
"""
Updates metadata for RegisteredModel entity. Input field ``description`` should be non-None.
Backend raises exception if a registered model with given name does not exist.
:param name: Name of the registered model to update.
:param description: (Optional) New description.
:return: A single updated :py:class:`mlflow.entities.model_registry.RegisteredModel` object.
.. code-block:: python
:caption: Example
def print_registered_model_info(rm):
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
print("description: {}".format(rm.description))
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
client.create_registered_model(name, tags, desc)
print_registered_model_info(client.get_registered_model(name))
print("--")
# Update the model's description
desc = "This sentiment analysis model classifies tweets' tone: happy, sad, angry."
client.update_registered_model(name, desc)
print_registered_model_info(client.get_registered_model(name))
.. code-block:: text
:caption: Output
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies tweets' tone: happy, sad, angry.
"""
if description is None:
raise MlflowException("Attempting to update registered model with no new field values.")
return self._get_registry_client().update_registered_model(
name=name, description=description
)
[docs] def delete_registered_model(self, name: str):
"""
Delete registered model.
Backend raises exception if a registered model with given name does not exist.
:param name: Name of the registered model to delete.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_models_info(r_models):
print("--")
for rm in r_models:
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
print("description: {}".format(rm.description))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Register a couple of models with respective names, tags, and descriptions
for name, tags, desc in [
("name1", {"t1": "t1"}, "description1"),
("name2", {"t2": "t2"}, "description2"),
]:
client.create_registered_model(name, tags, desc)
# Fetch all registered models
print_registered_models_info(client.search_registered_models())
# Delete one registered model and fetch again
client.delete_registered_model("name1")
print_registered_models_info(client.search_registered_models())
.. code-block:: text
:caption: Output
--
name: name1
tags: {'t1': 't1'}
description: description1
name: name2
tags: {'t2': 't2'}
description: description2
--
name: name2
tags: {'t2': 't2'}
description: description2
"""
self._get_registry_client().delete_registered_model(name)
[docs] def search_registered_models(
self,
filter_string: Optional[str] = None,
max_results: int = SEARCH_REGISTERED_MODEL_MAX_RESULTS_DEFAULT,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[RegisteredModel]:
"""
Search for registered models in backend that satisfy the filter criteria.
:param filter_string: Filter query string
(e.g., ``"name = 'a_model_name' and tag.key = 'value1'"``),
defaults to searching for all registered models. The following identifiers, comparators,
and logical operators are supported.
Identifiers
- ``name``: registered model name.
- ``tags.<tag_key>``: registered model tag. If ``tag_key`` contains spaces, it must be
wrapped with backticks (e.g., ``"tags.`extra key`"``).
Comparators
- ``=``: Equal to.
- ``!=``: Not equal to.
- ``LIKE``: Case-sensitive pattern match.
- ``ILIKE``: Case-insensitive pattern match.
Logical operators
- ``AND``: Combines two sub-queries and returns True if both of them are True.
:param max_results: Maximum number of registered models desired.
:param order_by: List of column names with ASC|DESC annotation, to be used for ordering
matching search results.
:param page_token: Token specifying the next page of results. It should be obtained from
a ``search_registered_models`` call.
:return: A PagedList of :py:class:`mlflow.entities.model_registry.RegisteredModel` objects
that satisfy the search expressions. The pagination token for the next page can be
obtained via the ``token`` attribute of the object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
client = MlflowClient()
# Get search results filtered by the registered model name
model_name = "CordobaWeatherForecastModel"
filter_string = "name='{}'".format(model_name)
results = client.search_registered_models(filter_string=filter_string)
print("-" * 80)
for res in results:
for mv in res.latest_versions:
print("name={}; run_id={}; version={}".format(mv.name, mv.run_id, mv.version))
# Get search results filtered by the registered model name that matches
# prefix pattern
filter_string = "name LIKE 'Boston%'"
results = client.search_registered_models(filter_string=filter_string)
print("-" * 80)
for res in results:
for mv in res.latest_versions:
print("name={}; run_id={}; version={}".format(mv.name, mv.run_id, mv.version))
# Get all registered models and order them by ascending order of the names
results = client.search_registered_models(order_by=["name ASC"])
print("-" * 80)
for res in results:
for mv in res.latest_versions:
print("name={}; run_id={}; version={}".format(mv.name, mv.run_id, mv.version))
.. code-block:: text
:caption: Output
------------------------------------------------------------------------------------
name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
------------------------------------------------------------------------------------
name=BostonWeatherForecastModel; run_id=ddc51b9407a54b2bb795c8d680e63ff6; version=1
name=BostonWeatherForecastModel; run_id=48ac94350fba40639a993e1b3d4c185d; version=2
-----------------------------------------------------------------------------------
name=AzureWeatherForecastModel; run_id=5fcec6c4f1c947fc9295fef3fa21e52d; version=1
name=AzureWeatherForecastModel; run_id=8198cb997692417abcdeb62e99052260; version=3
name=BostonWeatherForecastModel; run_id=ddc51b9407a54b2bb795c8d680e63ff6; version=1
name=BostonWeatherForecastModel; run_id=48ac94350fba40639a993e1b3d4c185d; version=2
name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
"""
return self._get_registry_client().search_registered_models(
filter_string, max_results, order_by, page_token
)
[docs] def get_registered_model(self, name: str) -> RegisteredModel:
"""
:param name: Name of the registered model to get.
:return: A single :py:class:`mlflow.entities.model_registry.RegisteredModel` object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_model_info(rm):
print("--")
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
print("description: {}".format(rm.description))
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework": "Spark NLP"}
desc = "This sentiment analysis model classifies the tone-happy, sad, angry."
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Create and fetch the registered model
client.create_registered_model(name, tags, desc)
model = client.get_registered_model(name)
print_model_info(model)
.. code-block:: text
:caption: Output
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework': 'Spark NLP'}
description: This sentiment analysis model classifies the tone-happy, sad, angry.
"""
return self._get_registry_client().get_registered_model(name)
[docs] def get_latest_versions(self, name: str, stages: List[str] = None) -> List[ModelVersion]:
"""
Latest version models for each requests stage. If no ``stages`` provided, returns the
latest version for each stage.
:param name: Name of the registered model from which to get the latest versions.
:param stages: List of desired stages. If input list is None, return latest versions for
for ALL_STAGES.
:return: List of :py:class:`mlflow.entities.model_registry.ModelVersion` objects.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_models_info(mv):
for m in mv:
print("name: {}".format(m.name))
print("latest version: {}".format(m.version))
print("run_id: {}".format(m.run_id))
print("current_stage: {}".format(m.current_stage))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Create two runs Log MLflow entities
with mlflow.start_run() as run1:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
with mlflow.start_run() as run2:
params = {"n_estimators": 6, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
name = "RandomForestRegression"
client = MlflowClient()
client.create_registered_model(name)
# Create a two versions of the rfr model under the registered model name
for run_id in [run1.info.run_id, run2.info.run_id]:
model_uri = "runs:/{}/sklearn-model".format(run_id)
mv = client.create_model_version(name, model_uri, run_id)
print("model version {} created".format(mv.version))
# Fetch latest version; this will be version 2
print("--")
print_models_info(client.get_latest_versions(name, stages=["None"]))
.. code-block:: text
:caption: Output
model version 1 created
model version 2 created
--
name: RandomForestRegression
latest version: 2
run_id: 31165664be034dc698c52a4bdeb71663
current_stage: None
"""
return self._get_registry_client().get_latest_versions(name, stages)
[docs] def set_registered_model_tag(self, name, key, value) -> None:
"""
Set a tag for the registered model.
:param name: Registered model name.
:param key: Tag key to log.
:param value: Tag value log.
:return: None
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_model_info(rm):
print("--")
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
name = "SocialMediaTextAnalyzer"
tags = {"nlp.framework1": "Spark NLP"}
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Create registered model, set an additional tag, and fetch
# update model info
client.create_registered_model(name, tags, desc)
model = client.get_registered_model(name)
print_model_info(model)
client.set_registered_model_tag(name, "nlp.framework2", "VADER")
model = client.get_registered_model(name)
print_model_info(model)
.. code-block:: text
:caption: Output
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework1': 'Spark NLP'}
--
name: SocialMediaTextAnalyzer
tags: {'nlp.framework1': 'Spark NLP', 'nlp.framework2': 'VADER'}
"""
self._get_registry_client().set_registered_model_tag(name, key, value)
[docs] def delete_registered_model_tag(self, name: str, key: str) -> None:
"""
Delete a tag associated with the registered model.
:param name: Registered model name.
:param key: Registered model tag key.
:return: None
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
def print_registered_models_info(r_models):
print("--")
for rm in r_models:
print("name: {}".format(rm.name))
print("tags: {}".format(rm.tags))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
client = MlflowClient()
# Register a couple of models with respective names and tags
for name, tags in [("name1", {"t1": "t1"}), ("name2", {"t2": "t2"})]:
client.create_registered_model(name, tags)
# Fetch all registered models
print_registered_models_info(client.search_registered_models())
# Delete a tag from model `name2`
client.delete_registered_model_tag("name2", "t2")
print_registered_models_info(client.search_registered_models())
.. code-block:: text
:caption: Output
--
name: name1
tags: {'t1': 't1'}
name: name2
tags: {'t2': 't2'}
--
name: name1
tags: {'t1': 't1'}
name: name2
tags: {}
"""
self._get_registry_client().delete_registered_model_tag(name, key)
# Model Version Methods
[docs] def create_model_version(
self,
name: str,
source: str,
run_id: Optional[str] = None,
tags: Optional[Dict[str, Any]] = None,
run_link: Optional[str] = None,
description: Optional[str] = None,
await_creation_for: int = DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
) -> ModelVersion:
"""
Create a new model version from given source (artifact URI).
:param name: Name for the containing registered model.
:param source: Source path where the MLflow model is stored.
:param run_id: Run ID from MLflow tracking server that generated the model
:param tags: A dictionary of key-value pairs that are converted into
:py:class:`mlflow.entities.model_registry.ModelVersionTag` objects.
:param run_link: Link to the run from an MLflow tracking server that generated this model.
:param description: Description of the version.
:param await_creation_for: Number of seconds to wait for the model version to finish being
created and is in ``READY`` status. By default, the function
waits for five minutes. Specify 0 or None to skip waiting.
:return: Single :py:class:`mlflow.entities.model_registry.ModelVersion` object created by
backend.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
desc = "A new version of the model"
runs_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
model_src = RunsArtifactRepository.get_underlying_uri(runs_uri)
mv = client.create_model_version(name, model_src, run.info.run_id, description=desc)
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Description: {}".format(mv.description))
print("Status: {}".format(mv.status))
print("Stage: {}".format(mv.current_stage))
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Description: A new version of the model
Status: READY
Stage: None
"""
tracking_uri = self._tracking_client.tracking_uri
if (
not run_link
and is_databricks_uri(tracking_uri)
and tracking_uri != self._registry_uri
and not is_databricks_unity_catalog_uri(self._registry_uri)
):
if not run_id:
eprint(
"Warning: no run_link will be recorded with the model version "
"because no run_id was given"
)
else:
run_link = get_databricks_run_url(tracking_uri, run_id)
new_source = source
if is_databricks_uri(self._registry_uri) and tracking_uri != self._registry_uri:
# Print out some info for user since the copy may take a while for large models.
eprint(
"=== Copying model files from the source location to the model"
+ " registry workspace ==="
)
new_source = _upload_artifacts_to_databricks(
source, run_id, tracking_uri, self._registry_uri
)
# NOTE: we can't easily delete the target temp location due to the async nature
# of the model version creation - printing to let the user know.
eprint(
"=== Source model files were copied to %s" % new_source
+ " in the model registry workspace. You may want to delete the files once the"
+ " model version is in 'READY' status. You can also find this location in the"
+ " `source` field of the created model version. ==="
)
return self._get_registry_client().create_model_version(
name=name,
source=new_source,
run_id=run_id,
tags=tags,
run_link=run_link,
description=description,
await_creation_for=await_creation_for,
)
[docs] def update_model_version(
self, name: str, version: str, description: Optional[str] = None
) -> ModelVersion:
"""
Update metadata associated with a model version in backend.
:param name: Name of the containing registered model.
:param version: Version number of the model version.
:param description: New description.
:return: A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Description: {}".format(mv.description))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
print("--")
# Update model version's description
desc = "A new version of the model using ensemble trees"
mv = client.update_model_version(name, mv.version, desc)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Description: None
--
Name: RandomForestRegression
Version: 1
Description: A new version of the model using ensemble trees
"""
if description is None:
raise MlflowException("Attempting to update model version with no new field values.")
return self._get_registry_client().update_model_version(
name=name, version=version, description=description
)
[docs] def transition_model_version_stage(
self, name: str, version: str, stage: str, archive_existing_versions: bool = False
) -> ModelVersion:
"""
Update model version stage.
:param name: Registered model name.
:param version: Registered model version.
:param stage: New desired stage for this model version.
:param archive_existing_versions: If this flag is set to ``True``, all existing model
versions in the stage will be automatically moved to the "archived" stage. Only valid
when ``stage`` is ``"staging"`` or ``"production"`` otherwise an error will be raised.
:return: A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Description: {}".format(mv.description))
print("Stage: {}".format(mv.current_stage))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
desc = "A new version of the model using ensemble trees"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id, description=desc)
print_model_version_info(mv)
print("--")
# transition model version from None -> staging
mv = client.transition_model_version_stage(name, mv.version, "staging")
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Description: A new version of the model using ensemble trees
Stage: None
--
Name: RandomForestRegression
Version: 1
Description: A new version of the model using ensemble trees
Stage: Staging
"""
return self._get_registry_client().transition_model_version_stage(
name, version, stage, archive_existing_versions
)
[docs] def delete_model_version(self, name: str, version: str) -> None:
"""
Delete model version in backend.
:param name: Name of the containing registered model.
:param version: Version number of the model version.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_models_info(mv):
for m in mv:
print("name: {}".format(m.name))
print("latest version: {}".format(m.version))
print("run_id: {}".format(m.run_id))
print("current_stage: {}".format(m.current_stage))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Create two runs and log MLflow entities
with mlflow.start_run() as run1:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
with mlflow.start_run() as run2:
params = {"n_estimators": 6, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
name = "RandomForestRegression"
client = MlflowClient()
client.create_registered_model(name)
# Create a two versions of the rfr model under the registered model name
for run_id in [run1.info.run_id, run2.info.run_id]:
model_uri = "runs:/{}/sklearn-model".format(run_id)
mv = client.create_model_version(name, model_uri, run_id)
print("model version {} created".format(mv.version))
print("--")
# Fetch latest version; this will be version 2
models = client.get_latest_versions(name, stages=["None"])
print_models_info(models)
print("--")
# Delete the latest model version 2
print("Deleting model version {}".format(mv.version))
client.delete_model_version(name, mv.version)
models = client.get_latest_versions(name, stages=["None"])
print_models_info(models)
.. code-block:: text
:caption: Output
model version 1 created
model version 2 created
--
name: RandomForestRegression
latest version: 2
run_id: 9881172ef10f4cb08df3ed452c0c362b
current_stage: None
--
Deleting model version 2
name: RandomForestRegression
latest version: 1
run_id: 9165d4f8aa0a4d069550824bdc55caaf
current_stage: None
"""
self._get_registry_client().delete_model_version(name, version)
[docs] def get_model_version(self, name: str, version: str) -> ModelVersion:
"""
:param name: Name of the containing registered model.
:param version: Version number as an integer of the model version.
:return: A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
# Create two runs Log MLflow entities
with mlflow.start_run() as run1:
params = {"n_estimators": 3, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
with mlflow.start_run() as run2:
params = {"n_estimators": 6, "random_state": 42}
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
name = "RandomForestRegression"
client = MlflowClient()
client.create_registered_model(name)
# Create a two versions of the rfr model under the registered model name
for run_id in [run1.info.run_id, run2.info.run_id]:
model_uri = "runs:/{}/sklearn-model".format(run_id)
mv = client.create_model_version(name, model_uri, run_id)
print("model version {} created".format(mv.version))
print("--")
# Fetch the last version; this will be version 2
mv = client.get_model_version(name, mv.version)
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
.. code-block:: text
:caption: Output
model version 1 created
model version 2 created
--
Name: RandomForestRegression
Version: 2
"""
return self._get_registry_client().get_model_version(name, version)
[docs] def get_model_version_download_uri(self, name: str, version: str) -> str:
"""
Get the download location in Model Registry for this model version.
:param name: Name of the containing registered model.
:param version: Version number as an integer of the model version.
:return: A single URI location that allows reads for downloading.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
artifact_uri = client.get_model_version_download_uri(name, mv.version)
print("Download URI: {}".format(artifact_uri))
.. code-block:: text
:caption: Output
Download URI: runs:/027d7bbe81924c5a82b3e4ce979fcab7/sklearn-model
"""
return self._get_registry_client().get_model_version_download_uri(name, version)
[docs] def search_model_versions(
self,
filter_string: Optional[str] = None,
max_results: int = SEARCH_MODEL_VERSION_MAX_RESULTS_DEFAULT,
order_by: Optional[List[str]] = None,
page_token: Optional[str] = None,
) -> PagedList[ModelVersion]:
"""
Search for model versions in backend that satisfy the filter criteria.
:param filter_string: Filter query string
(e.g., ``"name = 'a_model_name' and tag.key = 'value1'"``),
defaults to searching for all model versions. The following identifiers, comparators,
and logical operators are supported.
Identifiers
- ``name``: model name.
- ``source_path``: model version source path.
- ``run_id``: The id of the mlflow run that generates the model version.
- ``tags.<tag_key>``: model version tag. If ``tag_key`` contains spaces, it must be
wrapped with backticks (e.g., ``"tags.`extra key`"``).
Comparators
- ``=``: Equal to.
- ``!=``: Not equal to.
- ``LIKE``: Case-sensitive pattern match.
- ``ILIKE``: Case-insensitive pattern match.
- ``IN``: In a value list. Only ``run_id`` identifier supports ``IN`` comparator.
Logical operators
- ``AND``: Combines two sub-queries and returns True if both of them are True.
:param max_results: Maximum number of model versions desired.
:param order_by: List of column names with ASC|DESC annotation, to be used for ordering
matching search results.
:param page_token: Token specifying the next page of results. It should be obtained from
a ``search_model_versions`` call.
:return: A PagedList of :py:class:`mlflow.entities.model_registry.ModelVersion`
objects that satisfy the search expressions. The pagination token for the next
page can be obtained via the ``token`` attribute of the object.
.. code-block:: python
:caption: Example
import mlflow
from mlflow import MlflowClient
client = MlflowClient()
# Get all versions of the model filtered by name
model_name = "CordobaWeatherForecastModel"
filter_string = "name='{}'".format(model_name)
results = client.search_model_versions(filter_string)
print("-" * 80)
for res in results:
print("name={}; run_id={}; version={}".format(res.name, res.run_id, res.version))
# Get the version of the model filtered by run_id
run_id = "e14afa2f47a040728060c1699968fd43"
filter_string = "run_id='{}'".format(run_id)
results = client.search_model_versions(filter_string)
print("-" * 80)
for res in results:
print("name={}; run_id={}; version={}".format(res.name, res.run_id, res.version))
.. code-block:: text
:caption: Output
------------------------------------------------------------------------------------
name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
------------------------------------------------------------------------------------
name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
"""
return self._get_registry_client().search_model_versions(
filter_string, max_results, order_by, page_token
)
[docs] def get_model_version_stages(
self, name: str, version: str # pylint: disable=unused-argument
) -> List[str]:
"""
:return: A list of valid stages.
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
# fetch valid stages
model_uri = "runs:/{}/models/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
stages = client.get_model_version_stages(name, mv.version)
print("Model list of valid stages: {}".format(stages))
.. code-block:: text
:caption: Output
Model list of valid stages: ['None', 'Staging', 'Production', 'Archived']
"""
return ALL_STAGES
[docs] def set_model_version_tag(
self, name: str, version: str = None, key: str = None, value: Any = None, stage: str = None
) -> None:
"""
Set a tag for the model version.
When stage is set, tag will be set for latest model version of the stage.
Setting both version and stage parameter will result in error.
:param name: Registered model name.
:param version: Registered model version.
:param key: Tag key to log. key is required.
:param value: Tag value to log. value is required.
:param stage: Registered model stage.
:return: None
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Tags: {}".format(mv.tags))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
# and set a tag
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
print("--")
# Tag using model version
client.set_model_version_tag(name, mv.version, "t", "1")
# Tag using model stage
client.set_model_version_tag(name, key="t1", value="1", stage=mv.current_stage)
mv = client.get_model_version(name, mv.version)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Tags: {}
--
Name: RandomForestRegression
Version: 1
Tags: {'t': '1', 't1': '1'}
"""
_validate_model_version_or_stage_exists(version, stage)
if stage:
latest_versions = self.get_latest_versions(name, stages=[stage])
if not latest_versions:
raise MlflowException(f"Could not find any model version for {stage} stage")
version = latest_versions[0].version
self._get_registry_client().set_model_version_tag(name, version, key, value)
[docs] def delete_model_version_tag(
self, name: str, version: str = None, key: str = None, stage: str = None
) -> None:
"""
Delete a tag associated with the model version.
When stage is set, tag will be deleted for latest model version of the stage.
Setting both version and stage parameter will result in error.
:param name: Registered model name.
:param version: Registered model version.
:param key: Tag key. key is required.
:param stage: Registered model stage.
:return: None
.. code-block:: python
:caption: Example
import mlflow.sklearn
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_version_info(mv):
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Tags: {}".format(mv.tags))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
# Create a new version of the rfr model under the registered model name
# and delete a tag
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
tags = {"t": "1", "t1": "2"}
mv = client.create_model_version(name, model_uri, run.info.run_id, tags=tags)
print_model_version_info(mv)
print("--")
# using version to delete tag
client.delete_model_version_tag(name, mv.version, "t")
# using stage to delete tag
client.delete_model_version_tag(name, key="t1", stage=mv.current_stage)
mv = client.get_model_version(name, mv.version)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
Name: RandomForestRegression
Version: 1
Tags: {'t': '1', 't1': '2'}
--
Name: RandomForestRegression
Version: 1
Tags: {}
"""
_validate_model_version_or_stage_exists(version, stage)
if stage:
latest_versions = self.get_latest_versions(name, stages=[stage])
if not latest_versions:
raise MlflowException("Could not find any model version for {stage} stage")
version = latest_versions[0].version
self._get_registry_client().delete_model_version_tag(name, version, key)
[docs] def set_registered_model_alias(self, name: str, alias: str, version: str) -> None:
"""
Set a registered model alias pointing to a model version.
:param name: Registered model name.
:param alias: Name of the alias.
:param version: Registered model version number.
:return: None
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_info(rm):
print("--Model--")
print("name: {}".format(rm.name))
print("aliases: {}".format(rm.aliases))
def print_model_version_info(mv):
print("--Model Version--")
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Aliases: {}".format(mv.aliases))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
model = client.get_registered_model(name)
print_model_info(model)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
# Set registered model alias
client.set_registered_model_alias(name, "test-alias", mv.version)
print()
print_model_info(model)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
--Model--
name: RandomForestRegression
aliases: {"test-alias": "1"}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
"""
_validate_model_name(name)
_validate_model_alias_name(alias)
_validate_model_version(version)
self._get_registry_client().set_registered_model_alias(name, alias, version)
[docs] def delete_registered_model_alias(self, name: str, alias: str) -> None:
"""
Delete an alias associated with a registered model.
:param name: Registered model name.
:param alias: Name of the alias.
:return: None
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_info(rm):
print("--Model--")
print("name: {}".format(rm.name))
print("aliases: {}".format(rm.aliases))
def print_model_version_info(mv):
print("--Model Version--")
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Aliases: {}".format(mv.aliases))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
model = client.get_registered_model(name)
print_model_info(model)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
# Set registered model alias
client.set_registered_model_alias(name, "test-alias", mv.version)
print()
print_model_info(model)
print_model_version_info(mv)
# Delete registered model alias
client.set_registered_model_alias(name, "test-alias")
print()
print_model_info(model)
print_model_version_info(mv)
.. code-block:: text
:caption: Output
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
--Model--
name: RandomForestRegression
aliases: {"test-alias": "1"}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
"""
_validate_model_name(name)
_validate_model_alias_name(alias)
self._get_registry_client().delete_registered_model_alias(name, alias)
[docs] def get_model_version_by_alias(self, name: str, alias: str) -> ModelVersion:
"""
Get the model version instance by name and alias.
:param name: Registered model name.
:param alias: Name of the alias.
:return: A single :py:class:`mlflow.entities.model_registry.ModelVersion` object.
.. code-block:: Python
:caption: Example
import mlflow
from mlflow import MlflowClient
from mlflow.models.signature import infer_signature
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
def print_model_info(rm):
print("--Model--")
print("name: {}".format(rm.name))
print("aliases: {}".format(rm.aliases))
def print_model_version_info(mv):
print("--Model Version--")
print("Name: {}".format(mv.name))
print("Version: {}".format(mv.version))
print("Aliases: {}".format(mv.aliases))
mlflow.set_tracking_uri("sqlite:///mlruns.db")
params = {"n_estimators": 3, "random_state": 42}
name = "RandomForestRegression"
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
rfr = RandomForestRegressor(**params).fit(X, y)
signature = infer_signature(X, rfr.predict(X))
# Log MLflow entities
with mlflow.start_run() as run:
mlflow.log_params(params)
mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
# Register model name in the model registry
client = MlflowClient()
client.create_registered_model(name)
model = client.get_registered_model(name)
print_model_info(model)
# Create a new version of the rfr model under the registered model name
model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
mv = client.create_model_version(name, model_uri, run.info.run_id)
print_model_version_info(mv)
# Set registered model alias
client.set_registered_model_alias(name, "test-alias", mv.version)
print()
print_model_info(model)
print_model_version_info(mv)
# Get model version by alias
alias_mv = client.get_model_version_by_alias(name, "test-alias")
print()
print_model_version_info(alias_mv)
.. code-block:: text
:caption: Output
--Model--
name: RandomForestRegression
aliases: {}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: []
--Model--
name: RandomForestRegression
aliases: {"test-alias": "1"}
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
--Model Version--
Name: RandomForestRegression
Version: 1
Aliases: ["test-alias"]
"""
_validate_model_name(name)
_validate_model_alias_name(alias)
return self._get_registry_client().get_model_version_by_alias(name, alias)