Skip to main content

Tracing Gemini

Gemini Tracing via autolog

MLflow Tracing provides automatic tracing capability for Google Gemini. By enabling auto tracing for Gemini by calling the mlflow.gemini.autolog() function, MLflow will capture nested traces and log them to the active MLflow Experiment upon invocation of Gemini Python SDK. In Typescript, you can instead use the tracedGemini function to wrap the Gemini client.

MLflow trace automatically captures the following information about Gemini calls:

  • Prompts and completion responses
  • Latencies
  • Model name
  • Additional metadata such as temperature, max_tokens, if specified.
  • Token usage (input, output, and total tokens)
  • Function calling if returned in the response
  • Any exception if raised

Getting Started

1

Install Dependencies

bash
pip install mlflow google-generativeai
2

Start MLflow Server

If you have a local Python environment >= 3.10, you can start the MLflow server locally using the mlflow CLI command.

bash
mlflow server
3

Enable Tracing and Make API Calls

Enable tracing with mlflow.gemini.autolog() and make API calls as usual.

python
import mlflow
import google.generativeai as genai
import os

# Enable auto-tracing for Gemini
mlflow.gemini.autolog()

# Set a tracking URI and an experiment
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("Gemini")

# Configure your API key
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

# Use Gemini as usual - traces will be automatically captured
model = genai.GenerativeModel("gemini-2.5-flash")
response = model.generate_content("What is the capital of France?")
print(response.text)
4

View Traces in MLflow UI

Browse to the MLflow UI at http://localhost:5000 (or your MLflow server URL) and you should see the traces for the Gemini API calls.

→ View Next Steps for learning about more MLflow features like user feedback tracking, prompt management, and evaluation.

note

Current MLflow tracing integration supports both new Google GenAI SDK and legacy Google AI Python SDK. However, it may drop support for the legacy package without notice, and it is highly recommended to migrate your use cases to the new Google GenAI SDK.

Supported APIs

MLflow supports automatic tracing for the following Gemini APIs:

Python

Text GenerationChatFunction CallingStreamingAsyncImageVideo
-✅ (*1)--

(*1) Async support was added in MLflow 3.2.0.

TypeScript / JavaScript

Content GenerationChatFunction CallingStreamingAsync
-✅ (*2)-

(*2) Only models.generateContent() is supported. Function calls in responses are captured and can be rendered in the MLflow UI. The TypeScript SDK is natively async.

To request support for additional APIs, please open a feature request on GitHub.

Examples

Basic Text Generation

python
import mlflow
import google.genai as genai
import os

# Turn on auto tracing for Gemini
mlflow.gemini.autolog()

# Optional: Set a tracking URI and an experiment
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("Gemini")


# Configure the SDK with your API key.
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

# Use the generate_content method to generate responses to your prompts.
response = client.models.generate_content(
model="gemini-1.5-flash", contents="The opposite of hot is"
)

Multi-turn chat interactions

MLflow support tracing multi-turn conversations with Gemini:

python
import mlflow

mlflow.gemini.autolog()

chat = client.chats.create(model="gemini-1.5-flash")
response = chat.send_message(
"In one sentence, explain how a computer works to a young child."
)
print(response.text)
response = chat.send_message(
"Okay, how about a more detailed explanation to a high schooler?"
)
print(response.text)

Async

MLflow Tracing supports asynchronous API of the Gemini SDK since MLflow 3.2.0. The usage is same as the synchronous API.

python
# Configure the SDK with your API key.
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

# Async API is invoked through the `aio` namespace.
response = await client.aio.models.generate_content(
model="gemini-1.5-flash", contents="The opposite of hot is"
)

Embeddings

MLflow Tracing for Gemini SDK supports embeddings API (Python only):

python
result = client.models.embed_content(model="text-embedding-004", contents="Hello world")

Token usage

MLflow >= 3.4.0 supports token usage tracking for Gemini. The token usage for each LLM call will be logged in the mlflow.chat.tokenUsage attribute. The total token usage throughout the trace will be available in the token_usage field of the trace info object.

python
import json
import mlflow

mlflow.gemini.autolog()

client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

# Use the generate_content method to generate responses to your prompts.
response = client.models.generate_content(
model="gemini-1.5-flash", contents="The opposite of hot is"
)

# Get the trace object just created
trace = mlflow.get_trace(mlflow.get_last_active_trace_id())

# Print the token usage
total_usage = trace.info.token_usage
print("== Total token usage: ==")
print(f" Input tokens: {total_usage['input_tokens']}")
print(f" Output tokens: {total_usage['output_tokens']}")
print(f" Total tokens: {total_usage['total_tokens']}")

# Print the token usage for each LLM call
print("\n== Detailed usage for each LLM call: ==")
for span in trace.data.spans:
if usage := span.get_attribute("mlflow.chat.tokenUsage"):
print(f"{span.name}:")
print(f" Input tokens: {usage['input_tokens']}")
print(f" Output tokens: {usage['output_tokens']}")
print(f" Total tokens: {usage['total_tokens']}")
bash
== Total token usage: ==
Input tokens: 5
Output tokens: 2
Total tokens: 7

== Detailed usage for each LLM call: ==
Models.generate_content:
Input tokens: 5
Output tokens: 2
Total tokens: 7
Models._generate_content:
Input tokens: 5
Output tokens: 2
Total tokens: 7

Token usage tracking is supported for both Python and TypeScript/JavaScript implementations.

Disable auto-tracing

Auto tracing for Gemini can be disabled globally by calling mlflow.gemini.autolog(disable=True) or mlflow.autolog(disable=True).

Next steps