mlflow.environment_variables
This module defines environment variables used in MLflow.
-
mlflow.environment_variables.
MLFLOW_ALLOW_FILE_URI_AS_MODEL_VERSION_SOURCE
= 'MLFLOW_ALLOW_FILE_URI_AS_MODEL_VERSION_SOURCE' Specifies whether or not to allow using a file URI as a model version source. Please be aware that setting this environment variable to True is potentially risky because it can allow access to arbitrary files on the specified filesystem (default:
False
).
-
mlflow.environment_variables.
MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT
= 'MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT' (Experimental, may be changed or removed) Specifies the timeout to use when uploading or downloading a file (default:
None
). If None, individual artifact stores will choose defaults.
-
mlflow.environment_variables.
MLFLOW_DEFAULT_PREDICTION_DEVICE
= 'MLFLOW_DEFAULT_PREDICTION_DEVICE' Specifies the device intended for use in the predict function - can be used to override behavior where the GPU is used by default when available by setting this environment variable to be
cpu
. Currently, this variable is only supported for the MLflow PyTorch and HuggingFace flavors. For the HuggingFace flavor, note that device must be parseable as an integer.
-
mlflow.environment_variables.
MLFLOW_DFS_TMP
= 'MLFLOW_DFS_TMP' Specifies the
dfs_tmpdir
parameter to use formlflow.spark.save_model
,mlflow.spark.log_model
andmlflow.spark.load_model
. See https://www.mlflow.org/docs/latest/python_api/mlflow.spark.html#mlflow.spark.save_model for more information. (default:/tmp/mlflow
)
-
mlflow.environment_variables.
MLFLOW_DISABLE_ENV_MANAGER_CONDA_WARNING
= 'MLFLOW_DISABLE_ENV_MANAGER_CONDA_WARNING' Specifies whether or not to print a warning when –env-manager=conda is specified. (default:
False
)
-
mlflow.environment_variables.
MLFLOW_GCS_DEFAULT_TIMEOUT
= 'MLFLOW_GCS_DEFAULT_TIMEOUT' (Deprecated, please use
MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT
) Specifies the default timeout to use when downloading/uploading a file from/to GCS (default:None
). If None,google.cloud.storage.constants._DEFAULT_TIMEOUT
is used.
-
mlflow.environment_variables.
MLFLOW_GCS_DOWNLOAD_CHUNK_SIZE
= 'MLFLOW_GCS_DOWNLOAD_CHUNK_SIZE' Specifies the chunk size to use when downloading a file from GCS (default:
None
). If None, the chunk size is automatically determined by thegoogle-cloud-storage
package.
-
mlflow.environment_variables.
MLFLOW_GCS_UPLOAD_CHUNK_SIZE
= 'MLFLOW_GCS_UPLOAD_CHUNK_SIZE' Specifies the chunk size to use when uploading a file to GCS. (default:
None
). If None, the chunk size is automatically determined by thegoogle-cloud-storage
package.
-
mlflow.environment_variables.
MLFLOW_HTTP_REQUEST_BACKOFF_FACTOR
= 'MLFLOW_HTTP_REQUEST_BACKOFF_FACTOR' Specifies the backoff increase factor between MLflow HTTP request failures (default:
2
)
-
mlflow.environment_variables.
MLFLOW_HTTP_REQUEST_MAX_RETRIES
= 'MLFLOW_HTTP_REQUEST_MAX_RETRIES' Specifies the maximum number of retries for MLflow HTTP requests (default:
5
)
-
mlflow.environment_variables.
MLFLOW_HTTP_REQUEST_TIMEOUT
= 'MLFLOW_HTTP_REQUEST_TIMEOUT' Specifies the timeout in seconds for MLflow HTTP requests (default:
120
)
-
mlflow.environment_variables.
MLFLOW_KERBEROS_TICKET_CACHE
= 'MLFLOW_KERBEROS_TICKET_CACHE' Specifies the location of a Kerberos ticket cache to use for HDFS artifact operations. (default:
None
)
-
mlflow.environment_variables.
MLFLOW_KERBEROS_USER
= 'MLFLOW_KERBEROS_USER' Specifies a Kerberos user for HDFS artifact operations. (default:
None
)
-
mlflow.environment_variables.
MLFLOW_OPENAI_RETRIES_ENABLED
= 'MLFLOW_OPENAI_RETRIES_ENABLED' Specifier whether or not to retry OpenAI API calls.
-
mlflow.environment_variables.
MLFLOW_OPENAI_SECRET_SCOPE
= 'MLFLOW_OPENAI_SECRET_SCOPE' Specifies the name of the Databricks secret scope to use for storing OpenAI API keys.
-
mlflow.environment_variables.
MLFLOW_PYARROW_EXTRA_CONF
= 'MLFLOW_PYARROW_EXTRA_CONF' Specifies extra pyarrow configurations for HDFS artifact operations. (default:
None
)
-
mlflow.environment_variables.
MLFLOW_REQUIREMENTS_INFERENCE_TIMEOUT
= 'MLFLOW_REQUIREMENTS_INFERENCE_TIMEOUT' Specifies the
timeout_seconds
for MLflow Model dependency inference operations. (default:120
)
-
mlflow.environment_variables.
MLFLOW_S3_ENDPOINT_URL
= 'MLFLOW_S3_ENDPOINT_URL' Specifies the S3 endpoint URL to use for S3 artifact operations. (default:
None
)
-
mlflow.environment_variables.
MLFLOW_S3_IGNORE_TLS
= 'MLFLOW_S3_IGNORE_TLS' Specifies whether or not to skip TLS certificate verification for S3 artifact operations. (default:
False
)
-
mlflow.environment_variables.
MLFLOW_S3_UPLOAD_EXTRA_ARGS
= 'MLFLOW_S3_UPLOAD_EXTRA_ARGS' Specifies extra arguments for S3 artifact uploads. (default:
None
)
-
mlflow.environment_variables.
MLFLOW_SCORING_SERVER_REQUEST_TIMEOUT
= 'MLFLOW_SCORING_SERVER_REQUEST_TIMEOUT' Specifies the MLflow Model Scoring server request timeout in seconds (default:
60
)
-
mlflow.environment_variables.
MLFLOW_SQLALCHEMYSTORE_ECHO
= 'MLFLOW_SQLALCHEMYSTORE_ECHO' Specifies the
echo
parameter to use forsqlalchemy.create_engine
in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.echo for more information. (default:False
)
-
mlflow.environment_variables.
MLFLOW_SQLALCHEMYSTORE_MAX_OVERFLOW
= 'MLFLOW_SQLALCHEMYSTORE_MAX_OVERFLOW' Specifies the
max_overflow
parameter to use forsqlalchemy.create_engine
in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.max_overflow for more information. (default:None
)
-
mlflow.environment_variables.
MLFLOW_SQLALCHEMYSTORE_POOLCLASS
= 'MLFLOW_SQLALCHEMYSTORE_POOLCLASS' Specifies the
poolclass
parameter to use forsqlalchemy.create_engine
in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.poolclass for more information. (default:None
)
-
mlflow.environment_variables.
MLFLOW_SQLALCHEMYSTORE_POOL_RECYCLE
= 'MLFLOW_SQLALCHEMYSTORE_POOL_RECYCLE' Specifies the
pool_recycle
parameter to use forsqlalchemy.create_engine
in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.pool_recycle for more information. (default:None
)
-
mlflow.environment_variables.
MLFLOW_SQLALCHEMYSTORE_POOL_SIZE
= 'MLFLOW_SQLALCHEMYSTORE_POOL_SIZE' Specifies the
pool_size
parameter to use forsqlalchemy.create_engine
in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.pool_size for more information. (default:None
)
-
mlflow.environment_variables.
MLFLOW_TRACKING_AWS_SIGV4
= 'MLFLOW_TRACKING_AWS_SIGV4' Specifies whether MLFlow HTTP requests should be signed using AWS signature V4. It will overwrite (default:
False
). When set, it will overwrite the “Authorization” HTTP header. See https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html for more information.
-
mlflow.environment_variables.
MLFLOW_WHEELED_MODEL_PIP_DOWNLOAD_OPTIONS
= 'MLFLOW_WHEELED_MODEL_PIP_DOWNLOAD_OPTIONS' (Experimental, may be changed or removed) Specifies the download options to be used by pip wheel when add_libraries_to_model is used to create and log model dependencies as model artifacts. The default behavior only uses dependency binaries and no source packages. (default:
--only-binary=:all:
).